
MERGE: Meta Reinforcement Learning for
Tunable RL Agents at the Edge

Sharda Tripathi
Birla Institute of Technology and Science

Pilani, India

Carla Fabiana Chiasserini
Politecnico di Torino and CNIT

Torino, Italy

Abstract—The efficient allocation of radio resources is an
essential trait of 5G/6G radio access networks (RANs), as they
are called to meet diverse QoS requirements of highly demanding
applications. To equip RANs with such an ability and, at the
same time, meet their function split constraints, we envision a
distributed learning approach for radio resource allocation that
makes the most out of the Central Unit (CU) and Distributed
Unit (DU) components by effectively exploiting their synergy.
On the one hand, our solution, named MERGE, leverages the
knowledge of the radio connectivity dynamics that each DU can
acquire through the local use of a deep reinforcement learning
radio agent. On the other hand, it lets the CU collect such agents
in a crowdsourcing fashion, and, then, thanks to a meta-learning
policy, properly select and aggregate them to create up-to-date
radio agents of the right size (hence, complexity level) to fit
the computing constraints of the individual DUs. Our results
show that MERGE can match the performance of the highest-
complexity radio model with 25% less computational require-
ments, and, for a given computational resource, it outperforms
a single pruned model with a 19% increase in QoS.

Index Terms—Meta reinforcement learning, Edge computing,
Virtual RAN, Resource orchestration, ML model compression.

I. INTRODUCTION

The commercial deployment of 5G networks has made
available to the users a plethora of advanced services that
need massive data rates, high reliability, low latency, and
ubiquitous connectivity. To meet such diverse and stringent
performance indices, the concept of a virtualized radio access
network (vRAN) at the edge is a key enabler, as it brings
together the best of network service virtualization and edge
computing. Another essential advancement in this respect
is the introduction of the gNB functional split architecture,
which, by splitting the RAN stack across distinct components,
allows for increased flexibility, making the RAN configuration
significantly easier. Such disaggregated RAN includes Central
Unit (CU), Distributed Unit (DU), and Radio Unit (RU) [1].
While the RU is the radio hardware unit, the CU handles
such control plane functions as resource allocation, scheduling,
and mobility management, and the DU implements the CU’s
policies and manages the data plane for data radio transfer.
By separating the control and data planes, the split gNB
can facilitate the deployment of virtualized network functions,
thereby increasing resource handling efficiency.

This work was supported by the Horizon Europe project CENTRIC (Grant
No. 101096379) and by the EU under the Italian National Recovery and
Resilience Plan (NRRP) of NextGenerationEU, partnership on “Telecommu-
nications of the Future” (PE00000001 - program “RESTART”).

Considering large-scale connectivity with diverse channel
fading characteristics and service requirements, the application
of standard optimization frameworks at the CU for solving
the problem of radio resource allocation is often intractable.
Learning-based resource allocation algorithms [2], instead,
have the potential to effectively cope with the system com-
plexity for providing automated network control. However,
also in the case of learning-based approaches, several hurdles
exist in developing scalable, efficient solutions. [3] has shown
that conventional centralized approaches may scale poorly,
while distributed radio resource allocation can be much more
effective. It is worth observing that the latter can also be a
better match for the architecture of a typical disaggregated
vRAN, which consists of a number of DUs. On the other
hand, a DU has typically limited computing and storage
resources, as compared to the CU, which, being in charge of
controlling multiple DUs, is computationally more capable.
Moreover, implementing learning-based resource allocation
algorithms at the DUs would imply that the learning agents are
exposed only to local network dynamics, thereby limiting their
generalization capability and thus impacting the quality of
resource allocation decisions. To address the above issues, it is
imperative to envision solutions for the learning of distributed
agents that suit both the availability of compute resources at
the DUs and the need for model generalization.

In this work, we develop a solution, named MEta Reinforce-
ment learning framework for tunable RL agents at the edGE
(MERGE), that, leveraging both the CU and DU, effectively
realizes radio resource allocation at the vRAN. MERGE builds
on the intuition that, as noted above, a learning approach for
radio resource allocation cannot be handled at the DU alone.
Instead, the DU can host and execute a pre-trained, reduced-
size (or pruned) version of a learning agent that matches its
computational constraints and has been properly created at
the CU. Thanks to its architectural role and larger storage
capability, the CU can indeed collect knowledge from all the
DUs and use it to improve the capability of radio agents to deal
with unseen scenarios (e.g., sudden increase in network traffic,
or SINR variations). Further, to guarantee a timely delivery of
up-to-date radio agents, the CU can create in advance model
versions of different size, hence complexity level, store them,
and deliver an agent of the right size upon a DU’s request.

MERGE thus aims at learning to learn optimal resource
allocation strategies in computationally constrained environ-



Pruned Models

Repository

Model Maker

C
U

D
U

Radio Agent

U
E
s

RU

Radio

Policy

MI

U
p
d
a
te

Fig. 1: Structure of the MERGE framework

ments. To this end, it exploits a meta-learning, crowdsourcing
approach: as depicted in Fig. 1, it delivers pre-trained pruned
versions of deep reinforcement learning (DRL) radio agents to
the DUs, with size properly tuned to match the individual DUs’
computing constraints. Each DU then uses its agent and returns
the updated version to the CU, along with an indication of the
model performance. In this way, the CU can learn, and refine
its ability, to create right-sized radio models that can output
high-quality decisions on radio resource allocation. It does
so by using the model maker, in which another DRL agent
properly selects a subset of the radio agents, Ms, that the CU
has collected from the DUs. By aggregating such agents, the
model maker generates an inference model of suitable size,
MI , to be used at a DU for radio resource allocation.

To summarize, we make the following contributions:

• We propose MERGE, a meta RL framework for radio
resource allocation that effectively leverages the synergy
between CU and DUs (Sec. II);

• We design a DRL agent (i.e., the radio agent) for de-
termining at the DU the modulation and coding scheme
and the allocation of resource blocks for the served users
such that the target values of key performance indicators
(KPIs) are met (Sec. II-A);

• Next, we devise the model maker, which comprises
designing (i) a DRL agent (to run at the CU) to select
a subset of radio models based on the availability of
computing resources at the requesting DU, and (ii) an
Aggregator, to combine selected radio models for creating
an inference model of suitable size (Sec. II-B);

• Finally, we compare the performance of MERGE against
two benchmarks, and show that the decision-making
quality of MERGE matches the ideal benchmark with
25% less computational requirements, while, for a given
computational resource, its QoS is 19% better than that
of a single compressed model (Sec. III).

We remark that, as discussed in Sec. IV, the existing meta-
learning approaches deal with the edge compute constraints to
some extent, however, none of them addresses radio resource
allocation in disaggregated vRANs. Also, MERGE tackles the
model localization issue of pruning methods, while creating
agents suitable for resource-constrained environments.

II. THE MERGE FRAMEWORK

Our reference scenario comprises a vRAN infrastructure at
the edge that leverages the functional split of the gNB. The
proposed MERGE framework comprises two modules, (i) the
radio agent, operating at the DUs and providing radio policies
for user equipments (UEs), and (ii) the model maker, running
at the CU and designing meta learning policies for the radio
agents. Since a DU allocates radio resources to the UEs as the
network load and the edge-UE link quality vary over time, we
design the radio agent as a DRL model. However, due to their
limited compute resources, the DUs have to rely on the CU for
obtaining a suitably trained radio agent that can make effective
decisions. On the other hand, a radio agent running at a DU
gets further trained while being executed, thus resulting into
continuous updates of the DRL model. We therefore consider
that the DUs periodically provide their updated radio models
to the CU, which stores them for future use.

Let the CU locally store N versions of the radio model.
Since they have been previously used, hence trained, at dif-
ferent DUs, such models provide versions of the same DRL
agent, which, may differ in the ability to deal with different
domains. Furthermore, they may be pruned versions of the
same DRL model that has been compressed through different
pruning factors for reducing size and complexity to suit the
computing capability of specific DUs.

Below, we detail the MERGE framework components,
namely, the radio agent and the model maker.

A. Radio agent

We design the radio agent using a deep Q-learning network
(DQN) to enable radio resource allocation in a vRAN that
meets the KPIs target values. Further, we account for the fact
that the DUs may be computationally constrained, due to the
limited capability of the edge servers hosting the vRAN and
the presence of other services that compete for the available
computing resources [3]. Without loss of generality, we focus
on a single DU allocating radio resources to U UEs, and let γu
and σu denote (resp.) the SNR and the buffer state reported
by UE u to the DU. Further, let t be the throttle time1 of
the vRAN implemented at the DU. Then the context vector
observed at the radio agent for making a decision in window
p is denoted by x

(p)
r := {γ(p)

1 , . . . , γ
(p)
U , σ

(p)
1 , . . . , σ

(p)
U , t(p)}.

Note that the SNR and the buffer state account for the link
and network dynamics, while the radio throttle time indicates
the vRAN computational load.

Based on the observed context, the radio agent makes deci-
sions on the maximum modulation and coding scheme (MCS)
that should be used to control the vRAN computational re-
quirements while aiming at maximizing the spectral efficiency,
and the number of resource blocks (RBs) to be allocated to
each UE. Thus, the action vector chosen in decision window
p is represented as a

(p)
r = {ω(p), ν

(p)
1 , . . . , ν

(p)
U }, with ω and

νu denoting (resp.) the MCS policy and the number of RBs

1CPU throttling is used, e.g., in Kubernetes, to enforce CPU limit. In the
throttle time, an application that exceeds the limit gets fewer CPU cycles.



allocated to UE u. The KPIs packet loss (ζ) and latency (λ) are
expected to meet their target values as identified by the 3GPP
standard [4]. The KPI satisfaction for each UE u is measured
at the end of every decision window p using the value of the
reward function, defined as [5]

rur(KPI)(x
(p)
r ,a(p)r ) =


1− erf(KPIt − KPIuo (x

(p)
r ,a

(p)
r ))

if KPI is met
erf(KPIt − KPIuo (x

(p)
r ,a

(p)
r )), else .

Therein KPIuo (x
(p)
r ,a

(p)
r ) is the observed KPI value in response

to action a
(p)
r and context x(p)

r for UE u, and KPIt denotes
the corresponding target KPI value. The total reward of the
radio agent in decision window p is given by,

r(p)r =
1

U

U∑
u=1

{rur(ζ)(x
(p)
r ,a(p)r ) + rur(λ)(x

(p)
r ,a(p)r )} .

The choice of the reward function is motivated by the need to
meet the KPI targets and keep an observed KPI as close as
possible to its target value to minimize resource consumption.

B. Model maker
The model maker is a DQN-based model located at the CU,

which implements meta learning for improving the training
of the radio agents. Specifically, its objective is to build pre-
trained radio models that meet the constraints imposed by
the computing-constrained edge while providing high-quality
MCS and RB allocations when used for inference at the DUs.
The elements of the model maker are as follows.

Context space. Given the radio model, the selection of
pruned versions thereof is primarily governed by two factors,
namely, (i) the availability of computing resources at the DU,
and (ii) the learning quality-related statistics of the pruned
radio models owned by the CU. It may be noted that the
radio agent and the model maker do not make decisions
with the same periodicity. Only when the learning at the
radio agent fails to make decisions of acceptable quality,
the model maker is invoked to provide a new inference
model. Thus, let τp be the duration of one decision window
at the radio agent and C > 1 any arbitrary integer, then
τq = Cτp is the duration of the decision window at the
model maker. Let M = {M1, . . . ,MN} be the set of N
pruned versions of the radio model available in the CU with
zin , zon , zhn

, hn, wµn
, wvn , wsn denoting (resp.) the size of

input layer, output layer, and hidden layers, number of hidden
layers, mean, variance, and sparsity of the weight matrix of
the n-th pruned radio model. Further, let φa be the available
computational resource at the edge; then we define the context
vector at the model maker in its decision window q as
x
(q)
m := {φ(q)

a , z
(q)
in

, z
(q)
on , z

(q)
hn

, h
(q)
n , w

(q)
µn , w

(q)
vn , w

(q)
sn }.

Action space. Upon receiving a new request for a radio
model from one of the DUs under its control, the CU selects
K (K ≤ N ) radio agents. The design objectives of the
model maker are to identify how many (namely, the value
of K) and which pruned radio models to select for creating an
aggregated inference model. To jointly meet these objectives,

we formulate the model maker’s actions as vectors, each
denoting a probability distribution over the choice of models to
be selected. Specifically, by denoting with αn the probability
of choosing pruned radio model n, we define the action vector
selected in decision window q as a

(q)
m := {α(q)

1 , . . . , α
(q)
N },

w Given N pruned radio models in the CU, the number
of possible action vectors is Atot =

∑N
n=1

(
N
n

)
. Further, if

K ≤ N pruned radio models are to be selected through a
(q)
m ,

it will have exactly K non-zero elements corresponding to the
selected models. To avoid any bias towards selecting particular
pruned radio models, we define α

(q)
n for n = 1, . . . , N as,

α(q)
n =

{
1/K, if pruned model n is selected,
0, otherwise.

Reward. Since the inference model needs to run using the
limited resources at the DU without compromising the quality
of radio decisions, we assign two KPIs to the model maker,
(i) amount of computing resources consumed by the inference
radio model, φc, and (ii) reward of the radio agent at its
convergence, ρ, to assess the satisfaction of the radio KPIs
for the served UEs. Then the total reward of the model maker
in decision window q is given by,

r(q)m = rm(φ)(x
(q)
m ,a(q)m ) + rm(ρ)(x

(q)
m ,a(q)m ),

where rm(φ)(x
(q)
m ,a

(q)
m ), rm(ρ)(x

(q)
m ,a

(q)
m ) are the reward com-

ponents pertaining to KPIs (resp.) φc and ρ when action a
(q)
m

is taken on the observation of context x(q)
m . We define these

reward components as,

rm(φ)(x
(q)
m ,a(q)m ) =

(1− φ
(q)
c /φ

(q)
a )

(1− φmin/φ
(q)
a )

,

rm(ρ)(x
(q)
m ,a(q)m ) = ρ(q)/rr(max),

where φmin is the minimum computing resource correspond-
ing to the case when the radio model pruned by the maximum
compression factor is executed, and rr(max) is the maximum
possible reward of the radio agent. From the reward function
for the model maker, it is clear that 0 ≤ r

(q)
m ≤ 2.

DQN learning and pruned models selection. Q-learning
is a model-free RL technique in which the agent learns
to choose actions for a given state of the environment by
maximizing its long-term reward. For the model maker, we
adopt the definition of long term reward given as the dis-
counted expected return [6], Gm =

∑∞
i=0 γ

ir
(q+i)
m , where

γ ∈ [0, 1] is the discount factor to account more for
the immediate next rewards than the longer-term future
rewards. The value of taking an action in decision win-
dow q of the model maker, following meta-learning policy
π, is quantified using the Q-value as, Qπ(x

(q)
m ,a

(q)
m ) =

Eπ[Gm|x(q)
m ,a

(q)
m ]. In practice, since the optimal Q-values

follow the Bellman’s recursive equation Q⋆
π(x

(q)
m ,a

(q)
m ) =

E[r(q)m + γmax
a
(q+1)
m

Q⋆
π(x

(q+1)
m ,a

(q+1)
m )|x(q)

m ,a
(q)
m ], they are

iteratively learned over successive decision windows by mini-
mizing the difference between Q⋆

π(x
(q)
m ,a

(q)
m ) and its estimate



Q̂π(x
(q)
m ,a

(q)
m ). In a DQN, Q⋆

π(·) and Q̂π(·) are approximated
using two separate deep neural networks, called the target
and the prediction network, denoted (resp.) by Q(·,W tgt)
and Q(·,W pred), with W tgt and W pred as the corresponding
parameters. The target network output behaves as the ground
truth for the prediction network, while the output of the
latter governs the choice of selected actions. Thus, in decision
window q, the DQN is trained by minimizing the squared error
loss function given by [6],

L(q)(W tgt,W pred) = [r(q)m + γ max
a
(q+1)
m

Q⋆(x(q+1)
m ,a(q+1)

m ,W tgt)

−Q̂(x(q)
m ,a(q)m ,W pred)]2

The Q-value estimation is followed by an ϵ-greedy action
selection policy. Notice that the cardinality of the action space
is given by Atot, which quickly scales with increase in N , in
turn increasing the complexity of the DQN implementation. To
this end, we limit the size of the output layer of the prediction
network to N , and augment it with a softmax layer. Thus,
in the decision window q, the prediction network output is
a probability distribution β(q) = {β1, . . . , βN}, where βn

indicates the preference of choosing pruned radio model n.
Subsequently, we evaluate the Hellinger’s distance between the
probability distribution predicted by the DQN and the possible
actions as, H(q) = {h(q)

i }, h(q)
i = 1√

2

√∑N
j=1(

√
αj −

√
βj)2,

for i = 1, . . . , Atot, and select the greedy action a
(q)
m =

argminhH
(q) with probability 1− ϵ. Over successive decision

windows, ϵ decays by a factor of 10−4 to allow for more ex-
ploitation rather than exploration of the environment. Models
corresponding to non-zero elements in a

(q)
m are the desired

subset of selected pruned radio models.
Aggregate radio model. Since the selected pruned ra-

dio models may be heterogeneous owing to their different
pruning factors, and hence different sizes, we follow the
hierarchical strategy in [7] to aggregate them into a radio
model to be used for inference at the requesting DU. Let the
selected subset of pruned radio models in decision window
q be Ms = {M1, . . . ,MK}, parameterized by corresponding
weight matrices { θ1, . . . , θK }. We consider each of these
models to belong to one of the L complexity levels, each
level signifying a different pruning factor of the radio model.
That is, a model belonging to a higher complexity level
has been pruned by a smaller pruning factor, hence will
require more computational resources for its implementation.
Further, let {c1, . . . , cL} be the number of selected pruned
radio models at each complexity level. Then, at complexity
level l, we perform the aggregation as, θl = 1

K

∑K
k=1 θ

l
k, and

proceed up the hierarchy of complexity levels in a similar
manner, but excluding the aggregated weights at the immediate
lower complexity level, i.e., θl+1\θl = 1

K−cl

∑K−cl
k=1 θl+1

k \θlk.
Finally, the weight matrix of the aggregated inference model
MI is evaluated as θI =

⋃L−1
l=1 θl+1\θl.

Once the aggregated inference model is ready, it is shared
with the requesting DU for making resource allocation deci-
sions in the vRAN. The performance of MI is observed at

Algorithm 1: Workflow in the MERGE framework
1 Given: M, a set of N pruned versions of radio model locally stored at the CU
2 DU reports φ(q)

a to the CU, requests for a new radio model
3 Observe context x(q)

m , input to the model maker
4 Obtain probability distribution β(q) using DQN in the model maker
5 Evaluate Hellinger’s distance H(q)

6 Apply ϵ-greedy policy for the selection of action a(q)
m

7 Obtain MI through hierarchical aggregation of selected pruned models,
deliver MI to the requesting DU

8 For decision window p of DU, p = 1, 2, · · · do
9 Observe context x(p)

r at the DU, input to the radio agent
10 Evaluate ar(p) using MI , take action in vRAN
11 Observe KPIs ζ(p), λ(p), evaluate r(p)r
12 Update parameters of radio agent
13 Repeat 9-11 until convergence of radio agent, observe ρ(q)

14 Observe KPIs ρ(q), φ(q)
c at the CU, evaluate r(q)m

15 Update parameters of the model maker

the DU in terms of reward of the radio agent at convergence,
ρ, which in turn is shared back with the model maker for
its learning. The workflow of MERGE in a generic decision
window q of the model maker is summarized in Alg. 1.

III. PERFORMANCE EVALUATION

In this section, we first assess the performance of the
proposed MERGE framework by showing the convergence of
the model maker, followed by the behavior of the KPIs at the
CU and DU. We further highlight the trends observed during
the meta learning process, and finally present a comparison of
the MERGE framework against two baseline schemes.

To begin, we create a full DQN radio model that can make
high-quality radio resource allocation decisions at the DUs in
the case where there are no computational constraints. Next,
we consider 7 pruned versions of the full model to be locally
stored at the CU, out of which 2 are pruned by a factor of 0.5,
and the rest by 0.1, 0.3, 0.6, 0.8, and 0.9 each. The pruned
models are further trained using different context and action
scenarios to emulate statistical network diversity. Such pre-
trained pruned radio models are then selectively combined
using the meta learning policy of the model maker. We focus
on a DU requesting a radio model and consider that it is
serving 2 UEs. To enable the pre-training and learning of the
radio agents, we have used the datasets reporting the CPU
constraints and the corresponding KPIs for various contexts
and actions, available at https://github.com/corrado113/VERA.

Convergence evaluation. The values of the model maker
reward, and of its components, over successive decision
windows are shown in Fig. 2. We observe that both reward
components, and hence the total reward, saturate close to their
maximum value. Also, the variation in rm(ρ) is comparatively
smaller than rm(φc), because ρ, being the radio agent’s reward
at convergence, takes values closer to rr(max). In summary,
these results clearly highlight the effectiveness of the meta
learning policy of the MERGE framework.

KPI performance. Next, we present the evolution of the
KPIs for the model maker and the radio agent in (resp.) Fig. 3
and Fig. 4. From Fig. 3, one can notice that barring a few initial
decision windows when the model maker is still learning,
a high value of reward at convergence is maintained at the



Decision window of model maker, q

0 50 100 150 200 250

M
o
d
e
l 
m

a
k
e
r 

re
w

a
rd

0

0.5

1

1.5

2

Total reward rm

Reward component rm(ϕc)

Reward component rm(ρ)

Fig. 2: Convergence of the model maker

Decision window of the model maker, q

0 50 100 150 200 250

R
a
d
io

 a
g
e
n
t 
re

w
a
rd

 a
t 
c
o
n
v
e
rg

e
n
c
e
, 
ρ

1

1.25

1.5

1.75

2

ϕ
c
/
ϕ
a

0.75

1

1.25

1.5

1.75

Fig. 3: Model maker KPIs

radio agent. This signifies that the inference model MI is
making high-quality radio resource allocation decisions at the
DU. Besides, Fig. 4 also underlines that, once MI is tuned
in at the DU, the radio KPIs consistently fall below their
respective target values. For these plots, we have considered
τp = 1ms and τq = 2, 000τp, hence the learning of the radio
agent is faster compared to the learning of the model maker.
The choice of coefficient 2, 000 is motivated from our initial
experiments wherein we observed that in most cases, the radio
agent converges within 2000τp. Further, Fig. 3 shows that, as
the model maker learns the meta learning policy, the ratio of
computational resources consumed by MI with respect to the
available computational resources at the DU converges close
to 1. In other words, the proposed MERGE framework is able
to ensure sufficiently high-quality decisions while satisfying
the computational constraints of the DU.

Selection of pruned radio models. Fig. 5 presents some
statistics related to the selection of pruned radio models. The
plots underline that the subset of selected pruned models
mostly comprises either 1, 2, or 3 pruned radio models, with
preferred pruning factors as 0.5, 0.6, and 0.8. This suggests
that, on the one hand, the meta learning policy discourages
the selection of a large number of pruned radio models, or
heavier models (i.e., with lower pruning factor) in the wake
of computational constraints at the DU. On the other hand,

L
a
te

n
c
y
 [
m

s
],
 λ

0

500

1000

UE 1

UE 2

Decision window of radio agent, p

0 1000 2000 3000 4000 5000

P
a
c
k
e
t 
lo

s
s
, 
ζ

10-2

10-1

UE 1

UE 2

Target latency = 150 ms

Target packet loss = 0.01

Fig. 4: Radio agent KPIs

Size of selected model subset, K

1 2 3 4 5 6 7

M
o

d
e

l 
s
e

le
c
ti
o

n
 f

re
q

u
e

n
c
y

0

20

40

60

80

100

120

53

108

84

5

(a)

Model pruning factors

0.1 0.3 0.5 0.6 0.8 0.9

M
o

d
e

l 
s
e

le
c
ti
o

n
 f

re
q

u
e

n
c
y

0

20

40

60

80

100

120

140

160

180

18

125 125

153

46 49

(b)
Fig. 5: Model selection statistics from the model maker

the selection of very light models is less likely due their poor
decision-making capability. Hence, a combination of a few
moderately sized pruned radio models is best to obtain high-
quality decisions at the computationally constrained DUs.

Comparison with the baseline approaches. We now
compare the performance of MERGE against two baseline
approaches. In the first, we preserve the quality of decision
making by implementing the full radio model, assuming no
computational constraints at the DU: this is the best case of
radio resource allocation decisions and acts as the benchmark
for the meta-learning policy. From our dataset, we remark
that φa = 0.8 is enough to run the full radio model. Here,
φa, denoting the available computational resources at the DU,
is the CPU limit of the containerized implementation of the
vRAN in the testbed using which the dataset has been reported.
In the second benchmark, we compromise on the quality
of decisions while adhering to the computational constraints
at the DU, i.e., a single pruned model suiting the available
computational resources at the DU makes resource allocation
decisions, and there is no meta learning. The comparison in
terms of reward of the radio agent (which, in turn, signifies
the QoS satisfaction of the UEs) is presented in Fig. 6. We
observe that MI , as derived from MERGE, performs at par
with the best case as the learning converges, albeit consuming
less computational resources. Also, Fig. 6 shows that, given
the same availability of computational resources, MERGE
outperforms a single pruned model at the DU, with the latter
being selected as the best pruned model that the DU can
afford. Specifically, MERGE matches the performance of the
full radio model with 25% less computational requirements,
and for a given computational resource, its QoS satisfaction is



Decision window of radio agent, p

0 1000 2000 3000 4000 5000

R
a

d
io

 a
g

e
n

t 
re

w
a

rd
, 

r r

0

0.5

1

1.5

2

Full model, ϕa = 0.8

MERGE framework, ϕa =0.6

Pruned local model, ϕa = 0.6

Fig. 6: Comparison of MERGE against two benchmarks

19% better in comparison to the single pruned model.

IV. RELATED WORK

Resource allocation in vRAN through deep learning is
fairly common in the literature and is of interest, particularly
for large-scale networks [2]. However, owing to the huge
computational requirements, their use in resource-constrained
edge environments is limited. Thus, exploring techniques to
reduce the size of deep learning models, yet maintain their
functional accuracy, is of great interest. In this respect, the
state-of-the-art can be classified into three broad areas, (i)
Pruning, (ii) Federated learning (FL), and (iii) Meta-learning.

Pruning approaches are designed to reduce the size of deep
networks subject to the QoS target of the KPIs. For instance,
[8] proposes a DRL model to adaptively prune deep networks
deployed on IoT devices, in order to minimize their energy
consumption.While this approach works independently on
stand-alone devices, [9] proposes a collaborative compression
scheme to reduce the deep network size used for human
activity recognition on mobile devices. [10], instead, partitions
the deep network into physical topology aware sub-nets and
simultaneously prunes them to minimize the communication
costs involved in distributed inference.

The pruning approaches often suffer from model localiza-
tion, thereby impacting the learning quality. This issue is
addressed using FL, which allows for model training from
multiple compute-constrained local learning agents while pre-
serving data privacy [11], [12]. In [13], the compute cost of FL
is further reduced using ensembles of pruned deep networks.
[14], instead, adapts the model size to the nodes’ computing
capability and data sets. Conceptually, FL enables learning
one task across multiple agents, thereby leading to richer
learning even for the agents running on compute constrained
devices. However, the output of FL agent is not adapted for
each participating agent, and may limit its performance in a
compute constrained scenario. Such tuning can be enabled us-
ing meta-learning policies, which are the most general among
all. Recently, meta-learning in mobile edge networks have
been proposed for task offloading, scheduling and resource
allocation [15]–[17]. Here, we highlight that the existing meta-
learning approaches may address the compute constraints in

edge computing to some extent, however, none of them has
been explored for radio resource allocation in disaggregated
vRANs as we do. Through MERGE, we address in a vRAN
environment, the model localization issue of pruning methods,
as well as create local agent constraints-specific deep networks
for radio resource allocation, which lacks in FL. To our
knowledge, such comprehensive, scalable learning architecture
for distributed radio resource allocation under computational
constraints in vRAN has not been proposed so far.

V. CONCLUSIONS

To support decision making based on distributed learning
that suits the capability of a disaggregated vRAN, we designed
a meta-learning crowdsourcing approach, named MERGE. In
MERGE, DUs use radio agents for radio resource allocation
decisions. The CU collects such models and properly selects
and aggregates them to create up-to-date radio agents that
produce high-quality decisions at the DUs, while meeting
their computational constraints. Our results show that MERGE
matches the best case with 25% less computational require-
ments, and, for a given computational resource, it outperforms
the QoS provided by a single pruned model by 19%.

As future work, we are investigating MERGE in more
complex scenarios, with multiple DUs as well as intelligent
services that have to be executed at the edge vRAN, thus
increasing the system heterogeneity and dimensionality.

REFERENCES

[1] 3GPP TS 38.470, “F1 general aspects and principles, (Rel. 17), 2022.
[2] B. Brik et al., “Deep learning for B5G open radio access network:

Evolution, survey, case studies, and challenges,” IEEE Open J. Comm.
Soc., vol. 3, 2022.

[3] S. Tripathi et al., “Fair and scalable orchestration of network and
compute resources for virtual edge services,” IEEE Trans. Mob. Comp.,
2023.

[4] 3GPP TS 23.501 v16.3.0 Tech. Spec. Group Services and System
Aspects; System architecture for the 5G System; Stage 2, (Rel. 16), 2019.

[5] S. Tripathi et al., “A context-aware radio resource management in
heterogeneous virtual RANs,” IEEE Trans. Cogn. Comm. Net., 2022.

[6] N. Sanghi, Deep Reinforcement Learning with Python. New York, NY:
Apress Berkeley, CA, 2021.

[7] E. Diao et al., “HeteroFL:computation and communication efficient
federated learning for heterogeneous clients,” in ICLR, 2021.

[8] M. Zawish et al., “Energy-aware AI-driven framework for edge-
computing-based iot applications,” IEEE Internet Things J., 2023.

[9] J. Liang et al., “A collaborative compression scheme for fast activity
recognition on mobile devices via global compression ratio decision,”
IEEE Trans. Mob. Comp., 2023.

[10] T. Jian et al., “Communication-aware DNN pruning,” in INFOCOM,
2023.

[11] Y. Jiang et al., “Model pruning enables efficient federated learning on
edge devices,” IEEE Trans Neural Netw. Learn Syst., pp. 1–13, 2022.

[12] Z. Jiang et al., “Computation and communication efficient federated
learning with adaptive model pruning,” IEEE Trans. Mob. Comp., 2023.

[13] B. Alhalabi et al., “Fednets: Federated learning on edge devices using
ensembles of pruned deep neural networks,” IEEE Access, vol. 11, 2023.

[14] F. Malandrino et al., “Matching DNN compression and cooperative
training with resources and data availability,” in INFOCOM, 2023.

[15] Z. Zhang et al., “MR-DRO: A fast and efficient task offloading algorithm
in heterogeneous edge/cloud computing environments,” IEEE Internet
Things J., vol. 10, no. 4, 2023.

[16] S. Chen et al., “Cache-assisted collaborative task offloading and resource
allocation strategy: A metareinforcement learning approach,” IEEE
Internet Things J., vol. 9, no. 20, 2022.

[17] K. Min et al., “Meta-scheduling framework with cooperative learning
towards beyond 5G,” IEEE JSAC, 2023.


