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Executive Summary
This white paper presents the visionary approach of the CENTRIC project towards devel-
oping a sustainable AI-native Air-Interface for 6G networks, aiming to revolutionize wireless
communication through user-centric design. By leveraging advanced Artificial Intelligence
(AI) techniques, CENTRIC seeks to revolutionize wireless connectivity by placing users’
communication needs and environmental considerations at the forefront of network stack
design. The CENTRIC vision begins with a top-down, modular approach that starts with
users’ objectives and application-specific requirements. AI techniques are then employed to
tailor-make waveforms, transceivers, signaling, protocols, and resource management pro-
cedures to support these requirements, resulting in what we refer to as the user-centric AI
Air Interface (AI-AI). To ensure practical implementation, CENTRIC aims to explore and de-
velop innovative hardware computing substrates with realistic and AI-AI-compatible energy-
efficiency properties. This includes novel electronics such as neuromorphic computing and
mixed analog-digital platforms, alongside advancements in theory, algorithms, hardware co-
design, and training environments based on digital twins. Structured around the following six
key objectives, CENTRIC’s research encompass a comprehensive exploration of AI-driven
innovation, addressing critical challenges toward the realization of its 6G AI-AI vision.

1. To develop AI methods for the discovery of novel and efficient waveforms: CEN-
TRIC is pioneering the development of machine learning techniques to discover and
optimize tailor-made waveforms, ensuring optimal performance while accommodating
user communication needs and environmental constraints.

2. To develop AI methods for the discovery of novel and efficient transceivers: Fo-
cusing on large-scale extreme massive multiple-input multiple-output (MIMO) deploy-
ments and millimeter-wave (mmWave) spectrum, CENTRIC designs efficient AI-based
transceivers to enhance reliability and throughput in challenging scenarios.

3. To develop AI methods for the discovery of customized lightweight communica-
tion protocols: CENTRIC develops lightweight communication protocols that dynam-
ically adapt to changing network conditions and user requirements, ensuring efficient
and reliable communication tailored to specific applications.

4. To introduce novel end-to-end hardware co-design solutions for energy-efficient
AI-native transceivers: CENTRIC will develop novel end-to-end hardware co-design
solutions for energy-efficient AI-native transceivers, optimizing the integration of algo-
rithms and hardware to maximize energy efficiency.

5. To develop training and monitoring environments as enablers for AI-AI deploy-
ments: Through digital twins (DT)-based tools and frameworks, CENTRIC enables
network designers and operators to train and monitor AI models for real-world deploy-
ment, ensuring robustness and effectiveness in diverse operational settings.

6. To validate user-centric AI-AI solutions in a lab setting: CENTRIC will conduct rig-
orous testing and validation of AI-native air interfaces in lab settings, demonstrating the
feasibility and performance benefits of AI-driven solutions for real-world deployment.

7. To demonstrate and disseminate AI-AI concepts: By demonstrating novel AI-AI
concepts through laboratory proof-of-concept implementations and disseminating find-
ings to academic, industrial, and commercial communities, CENTRIC fosters collabo-
ration and innovation, driving forward the development of AI-enabled 6G systems.

Through these objectives, CENTRIC aims to advance the state-of-the-art in 6G systems
development, laying the groundwork for sustainable, efficient, and human-friendly wireless
communications. This white paper provides a comprehensive overview of the key techniques
and innovations that CENTRIC considers to be an integral component of its 6G AI-AI vision.
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1. Introduction

Current networks have been designed following a compartmentalized approach in which dif-
ferent network components are separately hand-crafted to meet their specific design criteria.
This rigid architecture imposes severe limitations on the ability of the network to efficiently
adapt to each specific user, device, and/or environment, resulting instead in a network-
centric architecture delivering a narrow set of standard services. Instead, CENTRIC pos-
tulates that 6G systems must see a tighter integration of communication and computing
systems with applications. This shall change the role of wireless connectivity from a reliable
bit pipe provider into a versatile platform that supports the semantics of a variety of ser-
vices. As the diversity of users, devices, and applications increases over the next decade,
the current separation-based design methodology will rapidly become a bottleneck. It will be
increasingly difficult to adapt communication solutions built in this way to specific environ-
ments and striving for cross-vendor interoperability in custom scenarios may face prohibitive
costs. Likewise, finding solutions that are both spectrally- and energy-efficient for such a
myriad of use cases will rapidly become infeasible. In addition, while a conventional design
methodology would need to build on trustworthy analytical models, the definition of tractable
models that account for end-to-end application-level performance indicators with hardware
in the loop appears to be beyond reach.
Furthermore, while the data usage and computational requirements of edge-node applica-
tions will keep increasing over the coming decade, the performance and power efficiency
of the hardware required to run them will struggle to keep pace. The slow-down in Moore’s
Law will indeed limit the ability of existing digital hardware devices to keep pace with the
computational needs of applications at the edge nodes, especially at mobile devices given
their requirements in terms of energy consumption. As an example, the implementation in
THz and Tbps wireless systems of forward error correction (FEC) modules based on today’s
standard codes such as low-density parity-check (LDPC) or polar codes is severely limited
by hardware power constraints [1]. Similarly, projections based on today’s digital baseband
solutions such as 802.11ax to 100 Gbps wireless throughputs yield power consumptions in
the orders of hundreds of watts, which are beyond any practical implementation of terminal
devices [2]. These considerations are harbingers of the upcoming “hardware-limited era”
in the design of wireless systems and motivate research into novel, more energy-efficient
computational paradigms.
In CENTRIC, we believe that AI will be an indispensable tool to satisfy the technical and
societal requirements of 6G communication systems. The recent advances in AI techniques
provide an opportunity to meet for the first time the ambitious goal of delivering energy-
efficient, user-centric communications. CENTRIC relies on the fundamental hypothesis that
by exploiting and advancing AI for communications – involving tools such as reinforcement
learning, transfer learning, meta-learning, federated learning, and semantic communications
— adaptable and efficient protocol stacks can be tailored to diverse scenarios, applications,
devices, and users. Unlike the study phases of 4G and 5G, the 6G study phase will have
massive amounts of data at its disposal, as well as a solid algorithmic foundation following
a decade of advances in ML. Consider, for example, a possible 2030s use case where an
indoor factory needs to be surveyed by 360o 4K wireless stereoscopic cameras. This is an
obvious case of mission-critical video streaming with extreme uplink bandwidth and latency
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Figure 1.1: CENTRIC AI-AI architecture concept.

requirements. At the same time, this is also a vertical market smaller than the eMBB market
that has driven 3G, 4G, and 5G network deployments. To meet such an ambitious QoE target
for a small customer, a customized lightweight design of the physical layer (PHY) and proto-
cols would be desirable, yet still unaffordable with today’s techniques. To this end, CENTRIC
proposes a user-centric AI-AI approach proposed by CENTRIC. At the PHY layer, the wave-
forms used by transceivers should be adapted to the radio-frequency (RF) characteristics of
the involved devices and the special electromagnetic propagation conditions of the factory
at the frequency bands of operation. Similarly, the types of data constellations used, MIMO
processing schemes, and pilot signals required should be tailored to the devices’ character-
istics and performance requirements. At the medium access control (MAC) and networking
layer, the confined nature of the scenario and the very restricted type of traffic calls for a cus-
tomized lean network, free of the unnecessary procedures and signaling overhead available
in today’s systems. Such a level of customization is not commercially viable today. Recent
research [3] has also shown that AI techniques can be used to train PHY layers that are
highly optimized — from both performance and energy-efficiency perspectives — to their
target channels. Following this promising trend, CENTRIC is using AI methods to leverage
user and environmental context to overcome the rigidity of current systems and produce truly
customized user-centric communication systems. AI-based customization techniques offer
flexibility and cost-saving benefits for both private industrial users and the public. Despite
government efforts, rural coverage remains a challenge due to lack of demand and telecom
industry interest. The proposed AI-AI powered 6G network can lower barriers to rural cover-
age and enable public networks to automatically adapt to changing user needs. The novel
user-centric AI-AI paradigm introduced by CENTRIC (see Figure 1.1) has the potential to
change the way we develop cellular systems, resulting in leaner and more automated pro-
cesses that shorten supply chains and development cycles, increasing the affordability of
these networks.

Finally, CENTRIC is developing AI-AI techniques to integrate AI waveforms and communi-
cation protocols with hardware computing platforms, aiming to explore novel computational
paradigms like neuromorphic computing and mixed digital and analog computing. This ap-
proach aims to customize solutions to individual user needs while maintaining affordable
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computational and energy consumption.

2. The Concept of a 6G User-Centric AI-AI

Current wireless networks focus on universal service offerings, catering to a limited number
of services like voice/video and IoT traffic. This approach reduces traffic categories to KPI
profiles, reflecting network limitations rather than users’ needs. CENTRIC is leveraging AI
techniques to create a top-down, modular approach to wireless connectivity, putting users’
communication needs and environmental constraints at the center of the network stack
design. Accordingly, CENTRIC’s designs start with the users’ communication needs and
application-specific requirements as depicted in Figure 2.1. Then, tailor-made waveforms,
transceivers, signalling, protocols, and hardware implementations are optimized adaptively
and on-demand within a modular architecture to support these requirements. CENTRIC will
make this possible by advancing theory, algorithms, hardware co-design, and training and
monitoring environments for future 6G use-cases, such as self-driving vehicles, the internet
of nano bio-things, or multi-sensory holographic communications.
In CENTRIC, the user’s requirements are specified to the network through well-defined
mechanisms ranging from the static compilation of KPIs and hardware availability to the
dynamic update of a virtual twin model of the agent’s behavior. The vision of CENTRIC
involves the use of an AI-native wireless connectivity interface that aims at mapping users’
requirements into custom communication protocols while accounting for hardware and envi-
ronmental constraints at the user-side and in the edge network segment.

2.1. CENTRIC’s Vision for a 6G User-CENTRIC AI-AI
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The following everyday example can help illustrate how CENTRIC envisions AI-powered
user-centric communications in the 2030s. Today, one can buy a smart lightbulb from Osram,
another one from Philips, and a gateway from Ikea and it is still a significant challenge to get
them to work together seamlessly. Despite numerous attempts in the past decade (involving
common protocols, gateway designs, and standards) the fragmentation of the smart home
market still prevents these so-called smart devices from communicating with one another
to solve the simplest of problems: turning on the lights. The incompatibility between these
systems occurs at various layers: At the physical layer, some systems use Zigbee, others
Bluetooth, and so on. At the security layer, not all systems may use the same encryption
mechanisms or key exchange algorithms. The application layer is, however, remarkably
similar across all these systems.
In CENTRIC, we advocate for an approach to 6G communications whereby the application’s
requirements define the starting point for the design of the underlying protocol stack. As the
example above illustrates, this is not yet possible today, as vendors of telecom equipment
simply cannot produce a new stack for each new application and scenario. However, for
the first time, there are strong indications that there is a reliable technology that can make
user-centric communications happen. The AI-native air interface (AI-AI) advocated by CEN-
TRIC will bring forth a degree of physical layer and protocol stack customization unseen
in the history of communication engineering. Leveraging AI-AI, each user (from the smart
lightbulb in the example to a wireless device on a factory floor) will benefit from the type
and amount of connectivity it needs, whenever and wherever it needs it. By delegating the
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Figure 2.1: The CENTRIC process for enabling an AI-native Air Interface

design and implementation of communication systems to the AI-AI, application-layer ven-
dors will be freed from having to maintain complex stacks and will be able to focus on their
application products. The communication solutions that will emerge with the AI-AI will be
application-specific and adaptable to the target scenario. This degree of automation and
flexibility will be essential not only to solve old problems as just described but also to support
the growing collection of wireless use cases of the next decade, such as virtual reality (VR)
/ augmented reality (AR) / extended reality (XR), autonomous driving and remote surgery.
Some of these novel services cannot afford to wait another ten years for the next wireless
standard. CENTRIC positions AI-AI as the essential fabric of future wireless connectivity
systems. Among the beneficiaries of this approach are naturally mobile network operators
and the private networks market, which will profit from highly customizable systems wherein
different customers have entirely distinct personalized needs. As humanity ventures into the
future, new and radically different communication needs will emerge. Addressing them with
a traditional multi-purpose wireless standard would significantly limit the scope of future ap-
plications, and potentially prevent many cutting-edge inventions from fulfilling their potential.
CENTRIC aims at being “future-proof,” endowing the networks of tomorrow with AI tools to
support a range of new applications. As an example of visionary applications that may be
enabled by an AI-native network, consider holographic communications or the workplace
metaverse. These will add to the unforeseen communication needs brought about by future
applications. Instead of developing a new cellular generation every ten years, CENTRIC
advocates AI-AI as the revolutionary tool that will produce, on-demand and in an automated
fashion, the communication systems that the future will demand. Overall, we believe that
AI-AI-powered radios will provide a fast, effective, and affordable way of ensuring that every-
one and everything enjoys tailored wireless connectivity services in an increasingly complex
world. Such a tailored service approach opens the door for obtaining specialized and adapt-
able waveforms and protocols that will make the most of every Hertz of spectrum and every
Joule of energy used, paving the path towards truly sustainable and spectrum-efficient 6G
networks.
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3. AI Techniques for the 6G AI-AI

In this section, we present the main techniques that CENTRIC considers important for the
6G AI-AI described above.

3.1. Physical Layer Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.1.1. End-to-End Learned Waveforms and Modulation

Over the last decade, ML has disrupted many engineering fields, and this revolution has also
started to happen for signal processing in wireless communications. Signs for this include a
dedicated 3GPP work group on ML for 5G Advanced (Rel. 18) [4] as well as first chip manu-
facturers integrating neural network hardware accelerators in their 5G modems [5]. Although
the use of ML in communications is not new [6], the research driving this current wave of ML
adoption started only around five years ago, see, e.g., [7]. There are generally two reasons
to resort to ML: a model deficit, implying the lack of trustworthy mathematical models for
the problem of interest, or an algorithmic deficit, indicating the lack of effective and com-
putationally feasible algorithms. CENTRIC views the availability of well-established models
and engineering insights as a key component in any AI-native solution. Leveraging domain
knowledge is instrumental to devising ML-enhanced algorithms that generalize well with a
small amount of training data, see, e.g., [8]. Example applications of these techniques are
MIMO detection [9] and channel estimation [10]. A common technique that is used in such
works is “deep unfolding” [11], whereby multiple iterations of an existing algorithm are con-
sidered as layers of a deep neural network and enriched with trainable parameters. Another
line of research, which was pioneered in [7] aims at ultimately replacing the entire physical
layer algorithms with neural networks. By interpreting the transmitter, the channel, and the
receiver as a single neural network, or autoencoder, the entire communication system can
be optimized from E2E with respect to a chosen loss function. That is why this concept
is also referred to as “E2E learning”. E2E learning is now able to emerge new codes [12],
waveforms [13], and modulation schemes [14] which can be spectrally efficient and hardware
friendly (due to lower peak-to-average-power ratio (PAPR)) than existing solutions. To fully
realize the benefits of E2E learning, CENTRIC considers the following research directions
crucial.

• End-to-End waveform Learning for sub-THz and short-packet transmission: CEN-
TRIC considers the integration of model-driven and end-to-end learning for new wave-
forms for the sub-THz band and transmission of short packets as essential components
of 6G AI-AI. Existing works [13] have shown potential for data-driven optimization of
waveforms, but this approach has not been applied for THz channels and hardware
due to phase noise and non-linear effects. A data-driven, E2E optimization approach is
expected to overcome modelling difficulties and lead to energy-efficient and hardware-
friendly waveform designs. E2E learning is particularly attractive for 6G transmission
of intermittent short packets, as it minimizes detection, synchronization, and channel
estimation overhead.

• User-tailored modulation learning: Symbol modulation and demodulation are es-
sential components of the PHY layer. In 5G NR physical downlink shared channel
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(PDSCH), modulation schemes are used in combination with channel coding to deter-
mine data transmission spectral efficiency. The base station instructs user equipment
(UE) to select a modulation and coding scheme (MCS) index table, based on the chan-
nel quality indicator (CQI) value and sounding reference signal (SRS) [15]. The MCS
with the highest spectral efficiency is selected, and the MCS is continuously updated
for PDSCH/PUSCH. Current fixed modulation types do not adapt to specific channel
conditions or RF impairments. Instead, a pre-defined constellation diagram, such as
binary phase-shift keying (BPSK) and quadrature amplitude modulation (QAM), is used
based on the received signal’s signal-to-interference-plus-noise ratio (SINR). In CEN-
TRIC, we aim to use deep learning techniques to overcome the downsides of fixed
modulations mentioned above. We aim to design a flexible constellation mapper that
adapts to real-world channel conditions by dispensing with channel probability distri-
bution models.

3.1.2. AI-empowered MIMO communications

For the last two decades, MIMO communication has been one of the main drivers for boost-
ing the spectral efficiency of modern mobile communication systems, a journey that spans
from the early antenna selection and antenna diversity schemes used in Global System for
Mobile Communications (GSM), to today’s complex massive MIMO systems. As such, a
large body of research on classical signal processing methods for MIMO communications is
nowadays available, many of them having found application in commercial systems. Looking
towards the future, however, the path to further development of MIMO processing is plagued
with old and new challenges that AI techniques seem particularly well-suited to overcome: (i)
scaling issues in performance and computational complexity resulting from increasing MIMO
dimensions; (ii) infeasibility of MIMO precoding due to increased pilot overhead for CSI ac-
quisition and computational burden; and (iii) directional beamforming and beam-based op-
erations required at high frequencies to overcome pathloss and blockage vulnerabilities.
In addition to novel algorithmic tools, the native introduction of AI methods in MIMO pro-
cessing will require the adaptation of wireless communication standards to account for and
introduce the necessary signalling procedures to enable them. So far, the application of
AI/ML to wireless communications has been mainly limited to implementation-based ap-
proaches at the network-side and/or UE-side. For example, the 3rd Generation Partnership
Project (3GPP) has examined the functional framework for radio access network (RAN) in-
telligence enabled by further enhancement of data collection [16] and introduced a network
functionality to collect data for analytics called Network Data analytics Function in its latest
Releases [17]. However, in the new Release 18 of 3GPP the trend is to introduce AI/ML more
holistically. Specifically, a study on AI/ML for NR Air Interface started in 2022 with the target
to “explore the benefits of augmenting the air-interface with features enabling improved sup-
port of AI/ML based algorithms for enhanced performance and/or reduced complexity/over-
head” [18]. This study is expected to lay the foundation for future air-interface procedures
leveraging AI/ML techniques. The technical innovations that CENTRIC proposes in the area
of MIMO processing to overcome the difficulties described above include:

• Deep learning methods for multi-user MIMO receivers: ML-based MIMO detec-
tion [19] has been extensively studied, but current solutions often struggle with realistic
channel models or require dedicated neural networks for different system parame-
ters [20]. CENTRIC is developing self-attention-based multiuser MIMO detection algo-
rithms, which will be evaluated on realistic 3GPP channel models and measured data
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from NVIDIA’s Aerial platform [21]. Transfer learning techniques [22], which transfer
knowledge from training models to new configurations or tasks, are also being explored
for adapting neural network-based receivers to diverse system parameters. This ap-
proach has been successful in beam management in mmWave communications [23]
and is being explored in CENTRIC.

• AI methods for CSI acquisition and MIMO precoder selection: The acquisition of
CSI at the transmitter and receiver is a significant challenge for future wireless net-
works due to the high pilot overhead. Previous research has focused on adjusting
pilot signal spacing, utilizing limited channel angular spread, and reducing CSI feed-
back [24–26]. The most common use cases include CSI feedback overhead reduction,
improved accuracy, and time domain CSI prediction. CENTRIC proposes a low com-
plexity solution using federated learning to incorporate E2E operations without sharing
large data sets. CSI acquisition and reporting are critical in MIMO precoder selection
in FDD MIMO systems, as imperfections in hardware components and channel esti-
mation can erode precoding performance. In this context, CENTRIC proposes a low
complexity/sustainable solution where collaboration between UE and network via fed-
erated learning is used to incorporate E2E operations without sharing large data sets
between various UEs and the network.

• AI methods for user-centric sensing-aided beam management: Beam manage-
ment in 5GNR [27] focuses on selecting and retaining a proper beam pair between
transmitter and receiver for good connectivity. Beam establishment for idle UEs and
beam tracking for connected UEs are major parts of this process. Without sufficient
measurement reports, signal blocking may interrupt service, leading to the degradation
of service quality. Between measurement reports, best-serving beams may become
obsolete, causing communication overhead and wastage of time-frequency resources.
Some works propose beam prediction using additional information like position [28,29]
or LIDAR [30], focusing on localization of individual users for better service [31]. AI/ML
approaches are being proposed to enhance beam tracking in 5G-advanced mobile
networks [32], particularly in 6G networks with extreme requirements and mmWave
bands. These approaches can improve efficiency and latency by leveraging the sens-
ing capabilities of 6G signals and other out-of-band sensors. A centralized integrated
sensing and communication system is identified as a main use case for 6G, with CEN-
TRIC focusing on beam tracking and prediction to combat environment uncertainties,
high interference, and low SINR conditions.

3.2. Protocol Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the previous section, we described CENTRIC’s position on the physical layer components
of the 6G AI-AI concept. To fully harness the benefits of an AI-native physical layer, it is
necessary to account for the medium access communication protocols that run on top of
it. CENTRIC is developing medium access communication protocols using AI techniques to
optimize the 6G AI-AI concept. The focus is on developing effective, energy-efficient, and
user-optimized protocols using a two-component approach: developing theoretical frame-
works for automated wireless protocol emergence and testing AI methods’ ability to optimize
protocols for specific tasks, such as channel access in IoT networks, multiple-access in spe-
cialized services, and transmission mode selection in dense deployments of heterogeneous
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Figure 3.1: CENTRIC protocol emergence procedure.

subnetworks. The protocol emergence procedure adopted by CENTRIC represents a dis-
ruptive change from the hand-craft procedure used in 5G as depicted in Figure 3.1.
Recent research on protocol learning has shown the effectiveness of emergent rules and
signalling messages via MARL techniques. In [33], an emergent rule for cellular MAC was
developed using a simplified version of the reinforced inter-agent learning (RIAL) architec-
ture. UEs were trained using MARL and L2C techniques to learn how to use pre-defined sig-
nalling messages, re-understanding the meanings of existing messages by artificial agents.
In another study [34], both BTS and UEs were trained to use bitstrings to maximize multi-
channel access utility. This was the first time AI radio nodes of a cellular wireless network
came up fully on their own with the rules and messages needed for optimal channel access.
However, practical challenges such as scalability and interpretability need to be addressed
before these techniques can be fully leveraged. CENTRIC is addressing these challenges
using novel MARL techniques, such as multi-agent proximal policy optimization (MAPPO)
[35], for wireless MAC protocol emergence. These emergent protocols have been cus-
tomized to the scenario where they are intended to be deployed. If successful, these tech-
niques could be a game changer for the growing market of private wireless networks, allow-
ing smaller technology companies to address the private networks market while reducing
development costs and delivery times. Such emerged protocols in CENTRIC will rely on
AI methods such as transfer learning, learning by demonstration, aggregation of supervised
learning with self-play reinforcement learning, zero-shot coordination, etc. In the sequel, we
briefly describe representative examples of the main innovations that CENTRIC promises to
deliver in the area of learned protocol.

3.2.1. Learned multiple-access protocols for specialized services

Learning multiple access protocols for specific users and applications can overcome limita-
tions of application-agnostic protocols and the gap between wireless KPIs and key quality
indicators (KQIs). This can lead to higher spectral efficiency and improved utilization of
available radio resources. A relevant application of multiple access protocols is communica-
tion and control co-design. Current 5G radio technologies have been designed to support
unprecedented requirements in latency and reliability, but the design of radio systems and
control systems has mainly been considered disjoint. AI solutions may significantly improve
the spectral efficiency of wireless communication by linking its performance to control sta-
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bility rather than wireless-only KPIs. Improving spectral efficiency can translate to reduced
airtime, particularly in unlicensed spectrum operations, and challenge the misconception
that reliable and low latency closed loop operations are only possible in licensed bands with
controlled interference. Channel access in massive IoT networks is another important appli-
cation, as channel access is limited to a few devices due to the dearth of spectral resources.
To minimize contention among devices, it is crucial to develop MAC protocols that are easily
scalable and adaptable to the rapidly changing environment without controlling information
message exchanges [36]. Deep reinforcement learning (DRL)-based frameworks can be
employed to optimize the design of networking protocols, learning which protocol function-
alities need to be included or neglected in the protocol design. CENTRIC is studying the
latency and efficiency of DRL-emerged protocols relative to legacy protocols, such as IEEE
802.11.

3.2.2. Methods for transmission mode selection in dense deployments

Transmission mode selection, i.e., selection of relevant transmission parameters such as
transmit power, frequency resources, precoder, and modulation, is a complex multi-objective
optimization problem, which is further exacerbated by the increased densification expected
in 6G (a factor of ×10 with respect to 5G, as stated in the 6G European vision whitepa-
per [37]). The concept of in-X subnetworks has been introduced as a further leap of het-
erogeneous network, with the aim of providing highly localized wireless coverage in entities
like vehicles, robots, production modules, and even human bodies [38, 39]. As the name
suggests, such subnetworks can be part of a larger 6G infrastructure, offloading the broader
network of the most demanding services; still, they must be able to operate stand-alone in
case of missing or intermittent connectivity with the broader network, especially in case of
life-critical services (e.g., brake control in vehicles). The deployment of subnetworks may
lead by nature to very dense deployments (e.g., vehicles in a congested road, humans at-
tending crowded events) and they can be mobile. These aspects may result in wide and
rapidly fluctuating interference patterns, which make the problem of transmission mode se-
lection more challenging than in traditional wireless setups, characterized by static base sta-
tions/access points and lower cell densities. Traditional optimization methods and heuristics
appear then obsolete for dealing with the complexity of such scenarios, thus calling for AI so-
lutions. Transmission mode selection in dense deployments can be leveraged with deep-Q
networks, since such solutions allow for handling efficiently the large amount of interference
states. Also, deep-Q learning can be combined with recurrent neural networks (RNN) for
capturing time-correlated transitions of the observed states. DQN methods allow for de-
centralized learning, where each wireless network can eventually train its agent. Bayesian
reinforcement learning methods will also be considered in CENTRIC, as they incorporate
domain knowledge as prior information in the learning process by leveraging Bayesian infer-
ence methods.

3.3. Sustainable and human-friendly RRM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The previous sections described the PHY layer and MAC components of CENTRIC’s 6G
AI-AI concept. For a wireless network to work properly while servicing its users, multiple
system-level decisions need to be made. These include functionalities like mobility manage-
ment, allocation of radio resources, load balancing, etc. The collection of all these functions
is known as RRM and plays a major role in the ultimate performance of wireless networks.
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Figure 3.2: CENTRIC’s approach to AI-enabled RRM

To this end, CENTRIC is exploring AI-based breakthroughs in some of the most pressing
6G RRM areas, such as sustainable data management at the wireless edge, EMF exposure
control in novel network architectures, and energy savings. CENTRIC’s approach to AI-
enabled RRM is illustrated in Figure 3.2. In the sequel, we described the novel aspects that
CENTRIC considers important for the RRM component of the proposed 6G AI-AI concept.

3.3.1. Caching methods for distributed learning

Two of the major challenges to realizing a sustainable AI-AI are the computational cost of
training and the need for large quantities of training data. While distributed learning has
emerged as a family of techniques aimed at better leveraging the computational capabilities
and data available at multiple networked nodes, it has become critical to minimize its energy
footprint [40]. In this context, we envision caching as a key enabler to reap the full bene-
fits of distributed learning, by making data and (sub-)models readily available where they
are needed, thus avoiding bandwidth consumption, and reducing the computational burden.
Thanks to data caching, ML models can be trained through plentiful and high-quality infor-
mation, thereby achieving convergence in a small number of epochs. At the same time,
caching whole models or parts thereof enables such techniques as transfer learning [22],
thus, kick-starting training from pre-trained networks. Both strategies help to achieve a good
learning quality in a short time and with a limited computational cost. Owing to their far-
reaching implications, caching decisions are complex. Specifically, one must jointly decide
what to cache and where in the network, accounting for factors including which network
nodes to involve in the distributed learning process, and the learning methodology to adopt.
Concerning caching, the main objective of CENTRIC is to devise, characterize, and test
caching strategies for data and AI/ML models that can further CENTRIC’s vision of high-
performance, sustainable networking.

3.3.2. Sustainable RRM techniques for cell-free massive MIMO networks

6G challenges include the development of novel network architectures, such as cell-free
networks, which are dense networks composed of geographically distributed access points
(APs) that serve a set of users simultaneously [41, 42]. These networks cooperate with
their neighbors to provide radio resources to the nearest users, exchanging signals, channel
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state information, and a common time reference. By properly configuring transmitted sig-
nals, beamwidth, and cooperation among APs, the network can be optimized to meet user
requirements in terms of quality of service while reducing interference and minimizing trans-
mit power. However, network configurations need to be adapted to the time-variant nature
of the environment, such as user locations, interference level, and service requirements.
AI/ML approaches are needed to effectively account for multiple factors, such as data rate,
coverage extension, fairness in user services, and EMF exposure. CENTRIC believes that
AI-based methodologies can be leveraged to obtain optimal resource allocation with less
computational complexity than current state-of-the-art solutions.
Pervasive AI will play a crucial role in cell-free networks where user safety is one of the
primary metrics to consider. One key aspect is providing a scalable solution with the num-
ber of users, as the complexity of signal processing and fronthaul signaling can become
unmanageable. Smart policies for assigning APs to users can decrease resource waste by
selecting only effective transmitters for each user. Distributed AI/ML techniques, such as FL,
can be leveraged to exploit a distributed resource allocation scheme, adapting to network
scalability.
To properly evaluate environmental and human EMF exposure levels, exposure modelling
using statistical and deterministic strategies for estimating electric field strength and/or dosi-
metric quantities in different indoor/outdoor scenarios will be a useful approach.

4. Training and Monitoring Environments for AI Models

The data-centric technological revolution is characterized by the interaction between phys-
ical elements in the real world and virtual elements that implement monitoring, control, or
predictive tasks based on observations. Data-driven (DT) platforms leverage wireless con-
nectivity to maintain a virtual mirror image of the physical agents’ states for optimizing data-
driven models that can simulate, predict, and control real-time operation. DT platforms can
integrate user-provided traffic and service demands models, a repository of AI modules
implementing different functionalities, standard or proprietary models of propagation and in-
terference environments, and interfaces with physical entities being modelled by virtual twin
counterparts. These novel functionalities are made possible by a closed-loop connection
with the physical twins, which carry raw or summary information regarding the performance
at different layers of the protocol stack.
CENTRIC identifies several methodologies as central to the development of training and
monitoring environments based on DT for 6G. For initial training, standard one-off training
is generally insufficient to address time variability to which lower layers of the protocol stack
are exposed. To address this, CENTRIC will design techniques that cater natively for adap-
tivity to changing conditions via meta-learning. Meta-learning provides a way to automatize
the selection of hyperparameters, such as initialization and learning rates, that define the
inductive bias of machine learning models. This allows the training of a machine learning
model with reduced training data, time, and/or complexity.
For monitoring, AI modules must provide a measure of uncertainty about their outcomes,
which can be tracked by a virtual twin to assess when adaptation and/or retraining are
necessary. CENTRIC will study the integration of meta-learning with validation-based or
cross-validation-based quantification methods, or with native epistemic uncertainty-aware
techniques such as Bayesian neural networks and approximations thereof.
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4.1. Theoretical principles for the management of AI-AI models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The first important theoretical question to drive design in CENTRIC is: How much data
is required to ensure a given level of generalization performance? CENTRIC focuses on
designing meta-learning algorithms that can adapt to novel conditions and measure gener-
alization performance in terms of accuracy and capacity to quantify uncertainty. To address
this, the platform will adopt accuracy and calibration error as performance metrics and de-
velop theoretical bounds based on information theory and statistical learning theory. This
framework will be used to assess uncertainty quantification and obtain specific insights in
the context of communication algorithms and protocols.
Another theoretical question is the impact of modularity on the generalization of meta-
learning algorithms. The Digital Twin (DT) platform in the open RAN (O-RAN) system has
AI modules available for recombination to obtain end-to-end solutions based on user re-
quirements and available data. The question is how much data is needed to identify the
configuration that guarantees the best performance at test time, as too many modules may
cause suboptimal solutions when not enough data is available. More complex modules may
also avoid the lack of data, but excessively specialized modules may cause bias.

4.2. Algorithms for the management of AI-AI models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CENTRIC aims to develop modular meta-learning strategies integrated with Bayesian and/or
conformal inference methods for adaptation and monitoring. The algorithms will be devel-
oped in an abstract setting with generic assumptions about model misspecification and out-
liers. Ensemble models can account for this bias, but new challenges will be tackled by
optimizing objectives from generalization analysis.
CENTRIC will adopt robust loss functions and performance criteria based on generalized
log-loss, discounting outliers. This presents a challenge in developing novel optimization
strategies with optimality guarantees. A novel generalization analysis will be used to account
for contaminated sampling distributions.
Modularity also defines design challenges, as optimization over module configuration is a
combinatorial problem. Solutions based on stochastic relaxations will enable the application
of gradient-based methods via the reparameterization trick. Use cases and benchmarks will
be developed in collaboration with all partners in CENTRIC, including transmission mode
selection, context-based caching, and cell-free networking.
6G research requires new tools, and CENTRIC will explore and develop novel simulation
environments that integrate rendering, wireless ray tracing, link-level simulation, and ML
capabilities. The outcome of this work will be a key enabler for the use of DTs for communi-
cations and will be used as a simulation tool within the project, such as research on ISAC,
environment-specific receiver algorithms, and air-interface design.

5. Hardware Enablers of the 6G AI-AI

5.1. Novel AI-computing hardware and real-time optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Traditional microprocessors are not well suited for implementing state-of-the-art deep neural
networks that require large amounts of matrix-vector multiplication operations. This is pri-
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marily because the on-chip memory is limited, and large matrix operations require frequent
access to off-chip memory and storage units. The need for frequent access to the memory
typically ends up being the main contributor to the overall energy consumption, as well as
to the overall latency, of the processor [43]. In-memory computing addresses this “von Neu-
mann Bottleneck” by leveraging a hardware architecture that supports close integration of
logic and memory units while implementing accelerator units to efficiently carry out matrix-
vector multiplications. In-memory computing can be implemented using either conventional
digital complementary metal–oxide–semiconductor (CMOS) technology or more advanced
beyond-CMOS technologies based on non-volatile memories [44].
To enable the CENTRIC 6G AI-AI vision, both CMOS and beyond CMOS implementations
of in-memory computing, as well as the acceleration of GPU-based processing for real-time
applications are been explored. In this section, we describe CENTRIC’s position on the need
for each of these paradigms as enablers of the 6G AI-AI.

5.1.1. Beyond-CMOS computing architecture

Beyond-CMOS research focuses on developing computing platforms using custom two- or
three-terminal memristive devices, such as Phase Change Memories (PCM), Metal–oxide
based reactive RAM (RRAM), conductive bridge RAM (CBRAM), Ferromagnetic materials-
based spin-transfer-torque magnetic RAM (STTMRAM), and Ferroelectric materials-based
Ferroelectric RAM (FeRAM). These memory technologies have achieved maturity with proto-
types featuring thousands or millions of devices. Other materials, such as organic polymers,
nano-ionic materials, and photonic components, are being demonstrated with typically less
than 100 devices. PCM technology [45–47] has been the most complex AI hardware demon-
strators due to its advanced hardware development, support for multi-level incremental pro-
gramming of states, and well-understood stochasticity and reliability characteristics of device
conducencies used to encode synaptic states. In contrast, PoCs using other technologies
use a smaller number of devices and use software simulations based on experimental mea-
surements. CENTRIC considers the design and evaluation of inference and optimization
engines based on emerging memristive devices for communications as an integral aspect of
their 6G AI-AI vision.

5.1.2. New mixed analog-digital memristor-based in-memory computing architecture

CENTRIC is developing an in-memory computing architecture using mixed analog-digital
memristors. The architecture will use tiled arrays of cross-bars based on PCM devices to
store software-determined synaptic weights. It will use analog conductance sensing for ma-
trix computations and digital message passing for transmitting neuronal output activations
between cores. The architecture will be optimized to accelerate common computational op-
erations, such as multiply, accumulate, and convolutions, necessary for implementing state-
of-the-art neural networks. The architecture will also map software-trained weights to analog
conductance levels of PCM devices, which can store approximately 4 bits per device. The
architecture will also evaluate designs for programming and read circuits, analog conduc-
tance sensing, and analog-to-digital converters (ADCs) to maintain precision and accuracy
for computations.

16



5.1.3. Novel designs based on neuromorphic computing paradigms

In-memory computing can be integrated with neuromorphic processing principles, replacing
static neurons with dynamic spiking neurons. This approach supports sparse, event-driven
computing, reducing the cost of inference and optimization routines [48]. Spiking proces-
sors also eliminate the need for costly multiplication operations involving high-precision real
numbers. CENTRIC is investigating architectural principles for accelerating spike-based
neuromorphic computing, optimizing peripheral read circuits for spike-based event-triggered
conductance sensing, and event-driven spike communication between cores. Neuronal units
are optimized for implementing various spike models, using sub-threshold characteristics of
CMOS transistors or stochastic incremental programming and threshold switching charac-
teristics of PCM devices.
The study also aims to determine how specific software-designed neural networks can be
mapped into the hardware architecture. Evaluation will be performed on the number of de-
vices and tiles required to accurately map the software weight into the cross-bar, consider-
ing non-ideal effects such as programming stochasticity, conductance drift, read noise, and
device-to-device and within-device variability. Performance metrics will be measured using
compact models of synaptic devices and peripheral circuits, and strategies to optimize the
architecture to meet overall system metrics will be considered.

5.2. Methods for GPU acceleration of deep learning algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Neural network architectures need to be implemented in hardware to enable efficient infer-
ence at PHY-layer speeds. Since the required latency and throughput in communications are
1-3 orders of magnitude higher compared to applications in other fields, such as computer
vision for self-driving cars, this poses a formidable engineering challenge. Weight quan-
tization [49] and model-hardware co-design are compulsory steps [50]. Analog hardware
accelerators, such as neuromorphic processors, might be a promising alternative to existing
designs with potentially dramatically lower energy consumption [51]. So-called “fully-fused”
neural networks [52], whereas many operations as possible are fused into a single CUDA
kernel, are one promising way to increase training and inference speed by several orders
of magnitude. This technique might hence enable online training of small neural networks
which was believed impossible for applications in communications. We aim to demonstrate
the practical feasibility of one of the ML-enhanced multiuser MIMO detection methods by
implementing it on an NVIDIA GPU using CUDA. The resulting latency and throughput will
be investigated in depth and their dependence on weight quantization to integer precision
analyzed.

6. Testing an AI Governed 6G Air Interface

6.1. Challenges in testing and validation introduced by AI methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The shift from a hand-crafted design of the components of the air-interface to a data-driven,
fully-automated learning approach is likely to raise concerns about the reliability and depend-
ability of the resulting technologies. On the one hand, the user-centric approach advocated
by CENTRIC will lead to a dramatically increased diversity of waveforms, transceiver algo-
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rithms, MAC, and RRM protocols, each adapted to the particular user needs and environ-
mental conditions on which they have emerged; this will significantly increase the complexity
of verifying that all the resulting technologies fulfill the required KPIs and KVIs. On the other
hand, the inherent lack of interpretability of AI models will make it difficult to pinpoint the
causes of performance deviations and, consequently, hamper the resolution of encountered
issues. For these reasons, CENTRIC recognises that, if the AI revolution is to extend to the
air-interface of 6G communication systems, it is imperative that the validation and testing
frameworks used to verify AI-based 6G components evolve along with them. To this end,
CENTRIC is investigating novel methodologies for automated testing of AI-based compo-
nents in 6G that can overcome the obstacles mentioned above. In addition, and to mitigate
the reservations that the industry may have about the move to an AI-AI, it is also crucial to
be able to showcase the performance of CENTRIC’s developed technologies in an experi-
mental, PoC setup.

6.2. Novel testing methodologies
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In order to test the technological innovations described so far, CENTRIC will also develop a
methodology to test and evaluate the performance of the developed approaches, which will
be done by specifying a number of test procedures that aim to evaluate and validate KPIs
and KVIs. The AI and ML-based approaches developed within CENTRIC will be focused on
actions related to communication systems. This will be reflected in the testing framework
and testing procedures that will be specialized in evaluating AI and ML-based technologies
in this context. As AI and ML-based approaches are often complex in implementation and
act as a black box, it is critical to have a clear procedure defined for how to test and interpret
results and metrics extracted when testing the approaches. The testing procedure will both
evaluate the approaches as black boxes and also support hooking into the inners to extract
features for evaluation and to increase transparency. This will be done by defining scenes
or scenarios that will include a predefined set of inputs and a set of evaluation points that
can be used to evaluate the performance of the system under test. This will include an
indoor and an outdoor scenario which will give a baseline evaluation of the AI and ML-based
approaches when operating in this context. The scene scenarios will be defined in such a
way that the optimal decisions and configurations will be known in advance. In that way,
the AI and ML-based approaches can be evaluated in terms of how well they approach the
optimal solution.
The testing of technologies within CENTRIC will be done within a testbed which will be de-
signed to support automated deployment and automated testing of the technologies. This is
important to support the quick return of information on whether the implemented AI updates
yield the expected improvement. Furthermore, the testbed will support automated testing
and easy modification of testing scenes and parameters once the AI approach/system un-
der test is deployed. The automation of testing procedures is an important aspect that will
greatly reduce the complexity of evaluating and re-evaluating tested technologies. The au-
tomation will also help when integrating with larger systems or testbeds, i.e., the testbed
developed here could be dropped as a component in the future 6G testbeds. This means
that key functionalities such as test triggering, control of components under test, and result
extraction should be exposed via open application programming interfaces (APIs). As CEN-
TRIC technologies will be developed by different industrial parties that will have an interest
in securing and preserving the IP of the developed technology, the testbed will also support
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Figure 6.1: Diagram of testing framework for testing AI and ML based approaches for 6G
communication systems to improve transparency and support benchmarking

the simulation of the developed technologies. In that way, the performance of the tested
approach can be evaluated in the context of other developed approaches or their simulated
behaviour.

6.3. PoC of AI-AI concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To be able to convey the effectiveness of the innovations produced in the project, CENTRIC
will produce several PoCs in the form of tabletop demos and lab experiments. These will
demonstrate the feasibility of the approaches in the real world in an over-the-air scenario,
and act as an aspect of the validation of the approaches. Additionally, the PoC will help to
identify issues or unforeseen effects of the approach when operating. The PoCs that will be
created in the frame of CENTRIC will be done in conjunction with co-simulations of other
system parts. The simulated system parts will both act as input generators and also as con-
sumers of outputs of the PoCs. This will support another goal which is to confirm that the
capabilities of an actual deployment match that of emulation. Similarly, the emulation can
also be verified by evaluating the capabilities of the PoC realization. It is vital to validate the
technology as well as the accuracy of the emulation, as both can be used in experiments
involving other technologies. Another use of the PoC is to support the development of test-
ing tools and methodologies to validate the performance, reliability, and resource usage of
the developed technologies. Both the PoC and testing methodologies developed here will
reduce complexity and difficulties when integrating the technology in other contexts such as
other 6G testbed projects.

7. Conclusion

The CENTRIC project positions itself at the forefront of unprecedented innovation in wire-
less communications through a multifaceted approach that encompasses the development
of novel AI techniques for 6G waveforms and transceivers, the emergence of new learned
protocols for specialized services in 6G, and advanced hardware implementation of AI-AI
methods. Firstly, the design, implementation and testing of AI-AI methods in a controlled lab
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environment are expected to unlock unprecedented potential in user-centric 6G waveforms
and transceivers. This systematic design and experimentation approach is foreseen to be
the catalyst for the practical application of these methods in real-world scenarios, translating
to enhanced communication capabilities, high adaptability, and better user experiences. The
utilization and contribution to open datasets for waveform and modulation learning in CEN-
TRIC are expected to not only speed up the development of sustainable and robust AI-AI
methods but also promote collaborative and open research. This contribution will indeed
enhance collective understanding of waveform and modulation learning thereby laying the
foundation for future innovations in this area. The development of a training sandbox for
Digital Twin networks will contribute to ensuring the reliability and robustness of the AI-AI
methods developed within CENTRIC. This will ensure that the methods can be seamlessly
integrated into operational networks. Another important outcome of CENTRIC will be a test-
ing framework for AI wireless algorithms that addresses a critical need for the validation
and verification of AI-based solutions. This framework is expected not only to enhance the
reliability of our methods but also to serve as a benchmark for future developments in wire-
less communication. CENTRIC is also expected to set a new standard for AI transceivers
via its contributions to the incorporation of GPU implementations and mixed analog-digital
hardware architectures for AI transceivers, translating to high computational efficiency, un-
precedented performance, and versatility of wireless transceivers.

In another stream, CENTRIC will result in enhanced sustainability of 6G networks. For in-
stance, the introduction of energy-efficient algorithms for wireless edge caching and radio
resource management (RRM) optimization represents a crucial step towards a sustainable
and environmentally friendly 6G network. CENTRIC’s expected contributions in this area
align with global efforts to minimize the ecological footprint of wireless networks. Also, CEN-
TRIC’s research is expected to provide evidence of the electromagnetic field (EMF) reduction
potential of cell-free networks, offering a glimpse into the future of wireless communication
with lower EMF exposure. Furthermore, the exploration of techniques for lowering EMF
exposure in the context of AI-enabled 6G networks is expected to demonstrate the transfor-
mative impact these technologies can have on the safety and well-being of users.

The innovative approaches taken in our project are expected to contribute to the cost-
effective and automated deployment of application-tailored services in wireless networks.
By streamlining deployment processes, we anticipate empowering service providers to of-
fer a diverse range of customized services, meeting the dynamic demands of users. The
emphasis on user-centric communications services, coupled with the pursuit of higher en-
ergy efficiency, aligns the CENTRIC project with the evolving needs and expectations of
the telecommunications industry. CENTRIC is therefore expected to lay the groundwork for
a paradigm shift towards more user-centric, efficient, and sustainable communication net-
works.

In summary, the CENTRIC project is expected to not only push the boundaries of tech-
nological innovation in wireless communications but also set the stage for the widespread
adoption of AI-AI solutions. The multifaceted expected impact, spanning from energy effi-
ciency to user-centric services, positions our efforts at the forefront of the ongoing evolution
towards 6G and beyond. As we anticipate contributing to pre-standardization activities on
AI-AI, we envision a future where our expected advancements become integral components
of the next generation of wireless communication standards, shaping the trajectory of the
telecommunications industry for years to come.
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