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Executive summary  

This deliverable compiles the validation of KPIs of most of the AI-based technological enablers 

that have been developed in the context of the CENTRIC project. In total, 20 enablers have 

been validated, and 37 KPIs have been quantified. In addition, baselines for performance 

reference, including classical and state-of-art AI techniques, have been included for each of 

the enablers. 

The report describes shortly the methodology followed for validation, and then presents an 

overview of the whole ensemble of considered technologies, their respective KPIs, and the 

corresponding performance targets. 

Subsequently, we delve in detail into the results obtained with each of the methods 

considered, organized by WP. Snapshots of the results are provided in order to better 

understand the behaviour of the considered techniques. 

While CENTRIC is a low TRL project, and integration of the enablers in higher TRL prototypes 

or trials are needed to achieve definitive conclusions, the results presented in this report are 

encouraging with respect to the potential of AI techniques to revolutionize the way the air 

interface of 6G will be designed. Based on this results, we can confidently conclude that the 

adoption of AI in the air interface of mobile communication systems has just started, and we 

foresee a promising future for them in 6G systems and beyond.  
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1 Introduction 

The ambitions of 6G networks are to support low latency in the order of microseconds, 

massive machine-type connectivity, ultra-high-speed connectivity, and energy efficiency 

compared to 5G. Furthermore, it will enable immersive communications such as extended 

reality (XR), high-fidelity holograms, etc. Artificial intelligence will be part of 6G, which will 

help 6G networks enhance their performance and efficiency. The enhancement brought by AI 

needs to be validated.  

In D5.1, “Early results on KPIs/KVIs testing methodologies and benchmarking,” we have 

identified the KPIs and KVIs relevant to assessing the impact of AI enabled air interface for 6G 

networks. In this deliverable we present a comprehensive approach to validate Keys 

performance indicators (KPI) for artificial intelligence (AI) native air interface for 6G networks. 

For each work package, we provide the enabler technologies that we followed to validate the 

KPIs. Also, we present the validation assumptions that have been followed along with the 

validation results. We have provided a benchmarking between the baseline and AI-based 

algorithms/technologies.  

While it was desired to also quantify the KVIs that were identified in D5.1, it was assessed that 

the technology maturity level of the technologies was not sufficient to approach such 

quantification. Quantification of KVIs requires integration of the enablers within a full model 

of the system. Achieving such level of integration was never the goal of CENTRIC, and would 

have deterred from achieving the impressive amount of enablers developed and validated 

that the project has produced. Rather than attempting to quantify the KVIs without sufficient 

basis to do so, which would have been a futile attempt, we refer the reader to CENTRIC 

deliverable D5.1 where proxy KPIs that can help gauging the contribution of a given enabler 

to the CENTRIC KVIs were identified. 

The rest of the deliverable is structured as follows:  

• Section 2 describes the validation methods used in this work and the process used to 

select KPIs. In addition, an overview of all the enablers for which validation results are 

provided in this deliverable is provided.  

• Section 3 constitutes the main body of this report, and describes for each enabler the 

KPIs that have been assessed, their target values, and the values attained by the 

methods in the validation process. In addition, baselines for comparison of the 

method’s performance are identified and assessed, including both traditional and AI-

based methods. 

• Section 4 draws conclusions from the work. 
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2 Benchmarking Methodology 

2.1 Validation methods and selection of KPIs 

The vast majority of enablers reported in this deliverable have been validated using computer 

simulations, being link-level simulations or system-level simulations. A few of the enablers 

have been accompanied by mathematical analysis, and this is remarked when applicable. In 

addition, there are also activities in CENTRIC to validate a small subset of the enablers by 

means of a proof-of-concept implementation in the lab. However, we do not discuss here 

validation by experimental means, as there will be a deliverable wholly devoted to it (D5.4) 

published by end of April 2025, where all details of the experimental validation will be 

provided. 

Regarding the selection of KPIs, careful comparison of this deliverable with the previous D5.1 

will reveal that not all the KPIs defined in D5.1 have been validated. Note that D5.1 KPIs were 

selected as being KPIs of interest for each particular enabler. However, many of those KPIs 

necessitate integration in a more complete system to be properly evaluated, which is not 

feasible given the low TRL that is the target of CENTRIC. The KPIs that have been chosen to be 

validated are those that the developers of the enablers themselves have selected as being 

feasible to validate with the degree of maturity of each enabler. We believe that this is a sound 

approach, as attempting to quantify certain KPIs in isolation of the rest of system components 

may lead to useless or, even worse, misleading results. 

2.2 Overview of enablers, KPIs and targets 

Table 1 provides an overview of all the enablers whose validation results are reported in this 

deliverable, organized by WP. For each of the enablers, the validated KPIs are described, as 

well as their target values. 

We emphasize that, while the table is large, containing overall 20 different technological 

enablers developed in CENTRIC, the list is by no means exhaustive. While it covers most of the 

work done in the project, there are some enablers in WPs 2, 3, and 4 which are still being 

developed or are in the process of validation at the time of writing of this deliverable, as the 

project still has some months before reaching its conclusion. 

Table 1: Overview of all enablers validated in this deliverable, their KPIs and the 
associated targets 

WP2 Enablers 

Enabler 
(Partner) 

Validation 
approach 

KPIs Targets 

In-context 
learning (KCL) 

Link-level 
simulations 

KPI#1: Mean-squared error vs 
varying front-haul capacity 

10% reduction with respect to 
B#1 and B#2 

KPI#2: Mean-squared error vs 
varying SNR 

10% reduction with respect to 
B#1 

Nullhop: Neural 
Receiver 
Acceleration 
(Synthara) 

RTL 
simulations; 
synthesis and 

KPI#1: Inference speed 1ms 

KPI#2: Inference complexity 
30% reduction with respect to 
B#2 

KPI#3: Block-error rate Improve with respect to B#1 
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power 
estimation 

WP3 Enablers 

Enabler 
(Partner) 

Validation 
approach 

KPIs Targets 

AIML-enabled 
CSI Compression 
(NOK) 

System-level 
computer 
simulations 

KPI#1: squared generalized cosine 
similarity 

10% improvement against 
baselines 

KPI#2: mean and cell-edge user 
throughput 

10% improvement against 
baselines 

Adaptive 
quantization for 
AIML-enabled 

CSI compression 

Link-level 
simulations 

KPI#1: SGCS 50% improvement over B#1, loss 
smaller than 20% over B#2. 

KPI#2: Signalling overhead 50% reduction with respect to 
B#1. 

KPI#3: Model generalization Generalization over different 
payload sizes 

CSI Prediction 
Enhancements 
(InterDigital) 

System-level 
simulations 

KPI#1: Throughput (mean and 5th 
percentile) 

5% increase for mean 
throughput, 15% increase for 5th 
percentile. 

Linear Coded 
Multi-TRP CSI 
Compression 
(InterDigital) 

Computer 
simulations 
and 
mathematical 
analysis 

KPI#1: squared generalized cosine 
similarity 

Less than 0.2 loss with respect to 
B#1. 

UE channel 
learning and 

array 
dimensionality 

reduction 
(Sequans) 

Link-level 
simulations 

KPI#1: SNR 
<1 dB loss with respect to no 
reduction 

KPI#2: reconstruction accuracy Within 2dB of B#2 

Joint Sensing 
and 
Communications 
(AAU) 

Link- and 
system-level 
simulations 

KPI#1: Communication rate 4 b/s/Hz 

KPI#2: Latency N/A 

ML-enabled 
Symbol 

Modulation 
(InterDigital) 

Link-level 
simulations 

KPI#1: Bit/Symbol-error rate Lower than B#1 under nonlinear 
impairments 

KPI#2: Model generalization ability Generalization achieved for 
multiple modulation orders 

Multi-user 
MIMO Neural 
Receiver 
(NVIDIA) 

Link-level 
simulations 
and proof-of-
concept with 
hardware-in-
the-loop 

KPI#1: BLER for fixed computational 
complexity 

BLER close to B#2 with lower 
computational complexity. 

KPI#2: Inference latency 
 

<1ms inference latency on 
NVIDIA A100 GPU 

WP4 Enablers 
DCI 
Compression 
(NNF) 

System-level 
and link-level 
simulations 

KPI#1: PDCCH reliability 0.2 dB decoding gain 

KPI#2: Lossless compression ratio 10% improvement versus B#1 

Task-oriented 
Cognitive 
Wireless 
Scheduling: 
Collaborative 
Navigation 
(OUL) 

Monte Carlo 
simulations 

KPI#1: Parallel task execution 
(evaluated with Jain’s fairness index 
[1]) 

As close to 1 as possible 

KPI#2: Latency to destination (in 
time-steps) 

As low as possible 
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Task-oriented 
Cognitive 
Wireless 
Scheduling: 
semantic 
communication 
and control co-
design (OUL) 

Link-level 
simulations 

KPI#1: Control performance – 
Normalized score 

In range [0.75—1] 

KPI#2: Communication efficiency – 
Communication bits and 
Transmission latency 

Minimize while maintaining 
target for KPI#1 

Emerging 
multiple-access 
protocols for 
specialized 
services (AAU) 

System-level 
simulations in 
in-factory 
scenarios 

KPI#1: buffer flush rate 0.9 median value 

KPI#2: signalling overhead 
50% reduction with respect to 
B#1 

Federated Multi-
Agent DRL for 
Radio Resource 
Management 
(AAU) 

System-level 
simulations 

KPI#1: User spectral efficiency 6 b/s/Hz at 1st percentile 

KPI#2: average RL reward 12.5 

ML-based Sub-
band Selection 
(AAU) 

System-level 
simulations 

KPI#1: rate-conforming 
subnetworks 

Median values of 9 for low-rate 
and 3 for high-rate subnetworks 

KPI#2: Training loss L L = 1 

Joint Sub-band 
Allocation and 
Power Control 
for Outdated CSI 
Scenarios (AAU) 

System-level 
simulations 

KPI#1: Spectral efficiency 
average SE = 8.5@median 

per-user SE = 5.8 @10-3 

KPI#2: Training loss 10-3 

Learning-based 
HARQ 

(InterDigital) 

Mathematical 
analysis 

KPI#1: Retransmission latency 50% decrease versus B#1 and 
B#2. 

KPI#2: Retransmission overhead 0.2 retransmissions 

Probabilistic 
Time Series 
Conformal Risk 
Prediction (KCL) 

Link-level 
simulations 

KPI#1: Prediction efficiency 10% improvement against B#1 

KPI#2: Delay, decoding probability, 
throughput, and energy efficiency 

10% improvement over B#2 

EMF Reduction 
via AI-enabled 
Cell-free 
Networking 
(CNR) 

System-level 
simulations 

KPI#1: whole body SAR (SARwb) Not exceed 0.08 W/kg 
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3 Benchmarking of CENTRIC Enablers 

3.1 Benchmarking of WP2 Enablers 

We begin by  

3.1.1 In-context learning 

In-context learning is a learning technique from the family of meta-learning methods. It can 

be seen as a way to adapt the outcomes of a given model to a particular task without a need 

for fine-tuning the model parameters. Instead, a set of example input-output pairs are 

provided to the model as context for the task – hence the name, in-context learning. In 

CENTRIC's WP2, n-context learning techniques have been theoretically developed and 

evaluated in an example application context corresponding to that of MIMO channel 

equalization.The outcome and conditions of the validation of this enabler are summarized in 

Table 2, with the details provided below. 

Table 2: Validation Summary for In-context learning 

In-context learning (KCL) 

Validation 
approach 

Baselines KPIs Targets Achieved Result 

Link-level 
computer 
Simulation 

B#1: (Traditional) 
Linear Minimum 
Mean Squared 
Error (L-MMSE) 

KPI#1: Mean-
squared error vs 

varying front-haul 
capacity 

10% reduction with 
respect to B#1 and 

B#2 

Target exceeded 
(>50% reduction) 

B#2: (AI) Model 
Agnostic Meta-

Learning (MAML) 

KPI#2: Mean-
squared error vs 

varying SNR 

10% reduction with 
respect to B#1 

Target exceeded 
from most SNR 

values 

 

3.1.1.1 Validation assumptions and measured KPIs 

The performance of the in-context learning (ICL)-based MIMO equalizer has been validated 

via link-level computer simulations using simple single-user MIMO channels as described in 

[2] as well as under cell-free multi-user MIMO systems [3]. In this report we mainly focus on 

the latter results A deep receiver that leverages in-context learning  and sequence models to 

adapt to time-varying channel conditions has been implemented and tested. In addition to 

the ICL-based equalizer, two baselines have been implemented: 

• B#1: The first baseline is a traditional L-MMSE based MIMO equalizer, such as 

described in [4].  

• B#2: The second baseline is also a deep receiver that exploits a concept of meta-

learning called model-agnostic meta-learning (MAML) [5].  

For all methods, the performance of the equalized channel is evaluated by calculating the 

mean square error (MSE) between the transmitted and equalized signals. This is measured 

under two different conditions, leading to the definition of two KPIs: 
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• KPI#1: In the first scenario, the MSE is evaluated against the fronthaul capacity of the 

assumed cell-free massive MIMO system. With low fronthaul capacity, quantization 

errors introduced by the fronthaul are expected to impair all methods’ performance.  

• KPI#2: In the second scenario, the MSE is evaluated against different signal-to-noise 

ratio (SNR) conditions, with the goal of making the proposed equalizer be robust to 

the relevant SNR range.  

For both KPIs, the target is to reduce MSE by 10% with respect to the baselines. 

3.1.1.2 Validation results 

The validation results for the proposed MIMO equalizer have been reported in [2] and [3], and 

we summarize the main outcome here. 

In the case of KPI#1, the obtained MSE results are presented in Figure 1, where the MSE 

achieved by the proposed equalizer is presented against that of B#1 (LMMSE) and B#2 

(MAML). In addition, the results of B#1 with unconstrained fronthaul are also presented. Two 

situations are evaluated: one in which the pilot signals used for channel estimation are 

orthogonal across the different users, and another in which pilot contamination is present. It 

can be observed that the proposed equalizer exhibits particularly good performance in the 

latter situation, achieving an MSE that is twice as small as that of LMMSE equalization and 

several orders of magnitude smaller than the MSE of the MAML-based receiver. 

 

Figure 1: Validation results of In-Context Learning for KPI#1 [3] 

The validation of KPI#2 focuses on evaluating the robustness of the proposed ICL-based 

equalizer against different SNRs, and particularly under pilot contamination conditions. A set 

of results are depicted in Figure 2, where the MSE of the proposed enabler and that of B#1 

are assessed under different levels of pilot contamination. It is worth noting that the plot “ICL 

without LS tokens” represents the same ICL-based receiver which has not utilized context 

about large-scale fading conditions of the channel. The results show a significant advantage 

of the ICL-based equalizer in all scenarios with pilot contamination (Pilot Reuse > 0) for all 

SNRs above -5 dB. They also show that incorporating large-scale fading information into the 

receiver is crucial for it to outperform traditional approaches. 
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Figure 2: Validation results of In-Context Learning for KPI#2 [3] 

3.1.2 Nullhop: Neural Receiver Acceleration 

The second enabler that will be evaluated in WP2 is the work done by Synthara?? to accelerate 

the neural receiver publicly available in NVIDIA’s Sionna platform [6].  

 

Table 3: Validation Summary for Nullhop: Neural Receiver Acceleration 

Nullhop: Neural Receiver Acceleration (Synthara) 

Validation 
approach 

Baselines KPIs Targets Achieved Result 

RTL simulations; 
synthesis and 

power estimation 

B#1: Receiver 
based on LS 

channel estimation 
[6] 

KPI#1: Inference 
speed 

1ms 70ms 

B#2: Original 
neural receiver 

model [6] 

KPI#2: Inference 
complexity 

30% reduction with 
respect to B#2 

60% sparsity 
increase 

KPI#3: Block-error 
rate 

Improve with 
respect to B#1 

Achieved 

 

3.1.2.1 Validation assumptions 

The receiver’s workload has been mapped and deployed onto Nullhop, which is and AI model 

and convolutional neural network accelerator. The receiver has then been simulated with EDA 

tools, allowing RTL simulations that reproduce the operations carried out in silicon with high 

precision. With this, accurate estimates of the latency and throughput achieved by the model 

can be obtained. Similarly, this setup allows to carry out estimation of the power consumption 

that the model would incur. Using the aforementioned tools, the receiver in [6] has then been 

quantized and sparsified in order to reduce its complexity and the inference latency. 

Two baselines are used for evaluation of the work: 

• B#1: the first baseline, used to compare the block error-rate (BLER) of the accelerated 

receiver, is the traditional (not AI based) receiver available in [6]. It is a receiver based 

on least-squares (LS) channel estimation, and using minimum mean squared error 

(MMSE) equalization.  
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• B#2: the second baseline is that of the original neural receiver model in [6]. This 

baseline is mainly used to evaluate the inference complexity reductions achieved by 

the accelerated version of the neural receiver model. 

As evaluation metrics, two KPIs are used: 

• KPI#1: the first KPI used to evaluate the accelerated model is the inference speed. The 

target is to reach 1ms inference time, which would allow running the receiver model 

in real-time. 

• KPI#2: the second KPI is the inference complexity, with the target being a 30% 

decrease with respect to B#2.  

• KPI#3: the third KPI is the block-error rate (BLER) achieved by the accelerated receiver. 

The target for it is to improve with respect to B#1. 

3.1.2.2 Validation results 

At the time of publication of this deliverable, work is still ongoing in the acceleration of the 

model. Hence, the results reported here will be succinct and should be understood as a 

temporary snapshot in the development process. 

For KPI#1, the current inference speed achieved is 70ms, whereas for KPI#2 a sparsity increase 

of 60% with respect to the original model has been achieved. These results are still far from 

the target, in particular for KPI#1, but work is ongoing on further closing the gap. 

In term of KPI#3, the BLER achieved by the accelerated receiver and the baselines is depicted 

in  

 

Figure 3: Validation results of Nullhop: Neural Receiver Acceleration for KPI#3 

 Final results will be reported in the corresponding WP2 deliverable towards the end of the 

project. 

3.2 Benchmarking of WP3 Enablers 
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3.2.1 AIML-enabled CSI compression 

The problem of channel state information (CSI) compression, that is, how to efficiently encode 

information of on the channel experienced by one user in order to feed the information back 

to the base station for precoding purposes, has achieved increasing relevance as the 

dimensions of antenna arrays grow at both network and terminal side. There is a fundamental 

trade-off between the accuracy of the encoded CSI and the amount of bits it is required to 

transmit it. In this enabler, deep neural networks (DNNs) are used to perform encoding and 

decoding of CSI, with the goal of achieving a better compromise between CSI accuracy and 

the overhead that its transmission entails. 

The outcome and conditions of the validation of this enabler are summarized in Table 4, with 

the details provided below. 

Table 4: Validation Summary for AIML-enabled CSI compression 

AIML-enabled CSI Compression (NOK) 

Validation 
approach 

Baselines KPIs Targets Achieved Result 

System-level 
computer 

simulations 

B#1: Enhanced 
Type II Codebook 

[7] 

KPI#1: squared 
generalized cosine 

similarity 

10% improvement 
against baselines 

12% improvement 

B#3: Transformer 
based encoder [8] 

KPI#2: mean and 
cell-edge user 

throughput 

10% improvement 
against baselines 

16% and 17% 
improvement for 

mean and cell-
edge user, 

respectively. 

 

3.2.1.1 Validation assumptions 

The enabler validation has been carried out using system level simulations considering 7 tri-

sectorial sites and using 3GPPP standardized channel models. In addition, it is assumed that 

the encoded CSI feedback channel from user to their base station is ideal. This implies the 

wireless channel does not introduce further errors in the encoded feedback, but the 

quantization error including by the CSI encoding process is still present. 

In addition to the proposed enabler, two other methods are used as reference baselines, one 

based on the current standard CSI codebook and one being another DNN based method: 

• B#1: the first baseline consists of utilizing the 3GPP Release 16 Enhanced Type II 

codebook [7] to perform the CSI encoding, as currently utilized in 5G NR systems. 

• B#2: the second baseline consists for a DNN model based on transformers, and is 

described in [8]. 

The performances of the different methods are validated using two different KPIs: 

• KPI#1: the first KPI is the squared generalized cosine similarity, which is a typical 

measure of the similarity between channel response vectors. 
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• KPI#2: as second KPI, different statistics of the throughput are used, in particular, the 

mean throughput and the cell-edge user throughput, that is, the 5th percentile of the 

throughput distribution. 

For both KPIs, the target is to achieve a 10% improvement with respect to the baseline. 

3.2.1.2 Validation results 

A complete description of the validation results is currently being worked on and will be made 

available in a publication soon. For the moment, the preliminary results show the following 

improvements with respect to the baselines: 

• KPI#1: a 12% improvement in squared generalized cosine similarity has been obtained. 

• KPI#2: in terms of user throughput, 16% improvement has been achieved for mean 

throughput, while the improvement for cell-edge users is of 17%. 

For both evaluated KPIs, the proposed method achieves the initial target. 

3.2.2 Adaptive quantization for AIML-enabled CSI compression 

Staying within the realm of the CSI compression problem, another related enabler developed 

in CENTRIC is that of AI-based CSI compression using adaptive quantization. Here, not only the 

CSI is compressed by an AI model, but the way the compressed information is quantized is 

adaptive, that is, going beyond uniform quantization.  

Results for this enabler have been contributed to 3GPP in [9]. The outcome and conditions of 

the validation of this enabler are summarized in Table 5, with the details provided below. 

Table 5: Validation Summary for Adaptive Quantization for AIML-Enabled Compression 

Adaptive Quantization for AIML-Enabled Compression (InterDigital) 

Validation 
approach 

Baselines KPIs Targets Achieved Result 

Link-level 
simulations 

B#1: uniform 
quantizer 

KPI#1: SGCS 

50% improvement 
over B#1, loss 

smaller than 20% 
over B#2. 

>100% 
improvement over 
B#1, 20% loss over 

B#2 

B#2: quantization-
aware model 

Signalling overhead 
50% reduction with 

respect to B#1. 
~50% 

Model 
generalization 

Generalization over 
different payload 

sizes 
Achieved 

 

3.2.2.1 Validation assumptions 

The proposed enabler has been evaluated using link-level simulations. Similarly to the 

previous enabler, the feedback channel between the user and the base station over which the 

compressed and quantized CSI is exchanged is assumed to be error-free – that is, the CSI itself 

still contains errors due to compression and quantization, but the transmission of the 

information over the channel suffers no packet or bit errors. 

Two baselines are used to benchmark the performance of the enabler: 
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• B#1: the first baseline is that of using a classical, uniform quantizer [9]. 

• B#2: the second baseline is provided by a compression model that has been trained 

aware of the type of quantization used. 

Using these baselines, three KPIs are assessed: 

• KPI#1: similarly as the previous enabler, the quality of the compressed CSI is assessed 

using squared generalized cosine similarity (SGCS). Target for this KPI is to improve 50% 

over B#1 and have a loss smaller than 20% with respect to B#2. 

• KPI#2: as a second KPI, the signalling overhead (in bits) incurred by the proposed 

method is evaluated. The target is to reduce the overhead by 50% with respect to 

uniform quantization (B#1) with 4 bits. 

• KPI#3: the third KPI is the model generalization capability, which is evaluated 

qualitatively. 

3.2.2.2 Validation results 

Validation results are reported in [9], and the highlights are included in Figure 4. From here, 

we can evaluate all the above defined KPIs. 

Regarding KPI#1, adaptive quantization for CSI compression improves SGCS by more than 

100% for low overhead compared to uniform quantization. Adaptive quantization shows 

around 20% performance loss compared to quantization-aware CSI compression for the 

lowest quantization (2 bits). For higher quantization (higher overhead) the loss is always below 

10% and gap diminishes as overhead increases. 

For KPI#2, signaling overhead can also be evaluated based on Figure 4. There, we can observe 

that adaptive quantization for CSI compression can achieve around 50% overhead reduction 

(from 256 bits to 128 bits) with similar SGCS performance compared to uniform quantizer. 

Finally, regarding KPI#3, it is observed that adaptive quantization for CSI compression can 

achieve generalization to support different payload sizes with minimal performance loss on 

SGCS. For the quantization-aware model, different models need to be trained for different 

payload sizes (i.e., for different quantization levels), which complicates its practical 

implementation. 

 

Figure 4: Validation results of Adaptive Quantization for AIML-Enabled Compression [9] 
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3.2.3 CSI Prediction Enhancements 

A third enabler on the topic of CSI compression and prediction is presented here. In this case, 

the power of AI models is used not just to compress the CSI information, but also to attempt 

to predict future CSI values. The enabler has been described in a contribution to 3GPP 

standardization [10]. 

The outcome and conditions of the validation of this enabler are summarized in Table 6, with 

the details provided below. 

Table 6: Validation Summary for CSI Prediction Enhancements 

CSI Prediction Enhancements (InterDigital) 

Validation 
approach 

Baselines KPIs Targets Achieved Result 

System-level 
simulations 

B#1: Sample-and-
hold Throughput (mean 

and 5th percentile) 

5% increase for 
mean throughput, 
15% increase for 

5th percentile. 

Target achieved for 
certain resource 

utilization 
conditions 

B#2: Kalman 
Filtering 

 

3.2.3.1 Validation assumptions 

For this enabler, system level simulations following the 3GPP simulation assumptions for UE-

sided CSI prediction reported in [11]. 

Two baselines are used to benchmark the performance of the enabler: 

• B#1: the first baseline, sample-and-hold, simply predicts that the CSI will stay constant 

until the next CSI measurement [10]. 

• B#2: the second baseline the Kalman Filter, it is a traditional predictor used in statistical 

signal processing [10]. 

Using these baselines, a single KPI is assessed for this enabler: 

• KPI#1: the throughput achieved by the system under the different prediction methods. 

In particular, two throughput statistics are used: the mean throughput, and the 5th 

percentile of the throughput distribution, which is typically referred to as the cell-edge 

user throughput. The target for the KPI is to reach a 5% improvement in mean 

throughput, and 15% improvement for cell-edge user throughput. 

3.2.3.2 Validation results 

A sample of the results obtained with the enabler is provided in Figure 5, while a more detailed 

analysis can be found in [10]. On the left-hand side of the figure, we can find the mean 

throughput gains of the proposed CSI prediction approach evaluated against B#1 and B#2 

under different resource utilization (RU) conditions. The transformer based AIML model CSI 

prediction performs 10% and 8% better than B#1 and B#2 respectively in terms of mean 

throughput for 25% resource utilization. The model performs 27% and 25% better than B#1 

and B#2 in terms of 5th-percentile throughput for 70% resource utilization. 
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Figure 5: Validation results of CSI Prediction Enhancements 

3.2.4 Linear Coded Multi-TRP CSI Compression  

As the last enabler in the domain of CSI feedback enhancements, we present now the results 

of a method for CSI compression in a multi transmission-reception point (TRP) setup. The 

method relies on linear coding to protect against the loss of uplink control information (UCI). 

The outcome and conditions of the validation of this enabler are summarized in Table 7, with 

the details provided below. 

Table 7: Validation Summary for Linear Coded Multi-TRP CSI Compression 

Linear Coded Multi-TRP CSI Compression (InterDigital) 

Validation 
approach 

Baselines KPIs Targets Achieved Result 

Computer 
simulations and 
mathematical 

analysis 

B#1: lossless 
compression 

KPI#1: squared 
generalized cosine 

similarity 

Less than 0.2 loss 
with respect to 

B#1. 

Target achieved 
with some specific 

linear coding 
matrices. 

 

3.2.4.1 Validation assumptions 

The validation for this enabler is still in a preliminary state, with simple computer simulations, 

together with mathematical analysis, have been used.  

As baseline for evaluation of the results, a single method is used: 

• B#1: the baseline is obtained by lossless CSI compression, which represents an ideal 

case. 

Using these baselines, a single KPI is assessed for this enabler: 

• KPI#1: squared generalized cosine similarity is the KPI used to assess the enabler. The 

target for the method is to obtain a loss smaller than 0.2 whenever the UCI in a packet 

is lost. 
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3.2.4.2 Validation results 

A snapshot of validation results obtained in a particular scenario is depicted in Table 8, where 

the shaded row represents the results obtained for the proposed method. The “Direct 

decode” method represents B#1, and the numbers indicate the SGCS obtained with the 

different matrices that can be used to perform linear encoding (A1, A2, and A3).  

Table 8: Validation Results for Linear Coded Multi-TRP CSI Compression 

𝑳𝒊𝒏𝒆𝒂𝒓 𝒄𝒐𝒅𝒆𝒅 𝒎𝒖𝒍𝒕𝒊 𝑻𝑹𝑷 𝑪𝑺𝑰 𝒄𝒐𝒎𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏  

𝑺𝑮𝑪𝑺 𝑨𝟏 𝑨𝟐 𝑨𝟑 𝑫𝒊𝒓𝒆𝒄𝒕 𝒅𝒆𝒄𝒐𝒅𝒆  

𝑯𝟏̂ 0.49 0.76 0.87 0.89 

𝑯𝟐̂ 0.90 0.90 0.89 0.89 

𝑯𝟑̂ 0.90 0.90 0.89 0.89 

 

The obtained results show that the method’s performance depends on the matrix used. We 

observe that linear coded compressed multi-TRP CSI feedback can achieve 0.76 (0.13 loss) and 

0.87 (0.02 loss) for SGCS with specific linear coding matrices (A2 and A3) when the 

corresponding UCI feedback is lost, hence reaching the target for these two matrices. 

3.2.5 UE channel learning and array dimensionality reduction for AI-based MU-MIMO 

precoding  

This enabler evaluates two complementary techniques. The first one consists of an array 

dimensionality reduction that can lower the complexity of MU-MIMO processing. The second 

one consists of an approach for channel learning carried out at the UE side. The outcome and 

conditions of the validation of this enabler are summarized inTable 9, with the details provided 

below. 

Table 9: Validation Summary for UE channel learning and array dimensionality reduction 

UE channel learning and array dimensionality reduction (Sequans) 

Validation 
approach 

Baselines KPIs Targets Achieved Result 

Link-level 
simulations 

B#1: Capacity of 
MIMO channels 

[12] 
KPI#1: SNR 

<1 dB loss with 
respect to no 

reduction 
0.75 dB loss 

B#2: Channel 
learning [13] 

KPI#2: 
reconstruction 

accuracy 
Within 2dB of B#2 

1.17 dB loss over 
B#2 

 

3.2.5.1 Validation assumptions 

The validation of the enabler is carried out based on link-level simulations performed in 

MATLAB. The dimensionality reduction method is tested in a system consisting of a UE with a 

receive array of 8 antenna elements, targeting a reduction to a 4-antenna effective array. An 

exhaustive search over all possible 4-antenna combinations. For the channel learning 

technique, on the other hand, a base station with 32 transmit antennas is considered, serving 

4 closely spaced single-antenna users. 
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Two theoretical baselines are used to benchmark the proposed techniques, presented below: 

• B#1: as first baseline, used for the dimensionality reduction techniques, the capacity 

bound of MIMO Gaussian channels in [12]. 

• B#2: the second baseline, used to evaluate channel learning, is the method presented 

in [13]. 

As KPIs for evaluation of the methods, two are considered: 

• KPI#1: the first KPI, used to assess the dimensionality reduction technique, is the SNR 

obtained with the best permutation of antenna reduction. This KPI is evaluated under 

two conditions: perfect, and imperfect CSI. In the former case, the target is to 

experience less than 1 dB loss of SNR in the effective, reduced array with respect to 

the full array. In the case of imperfect CSI, the target is to outperform the full array. 

• KPI#2: The second KPI, used to evaluate the channel learning method, is defined as 

the channel reconstruction accuracy per channel matrix element. The target is to 

perform within 2 dB of B#2. 

3.2.5.2 Validation results 

Here, we show a snapshot of results for the two KPIs defined above. Note that some results 

for the dimensionality reduction technique have already been reported in CENTRIC 

deliverable D3.3. Further results for both array dimensionality reduction and channel learning 

techniques will be documented in D3.5. 

The results for the SNR obtained with the dimensionality reduction technique are reported in 

Figure 6, where the left-hand side figure represents the perfect CSI case, and the right-hand 

figure shows the case in which channel estimation errors are present. In the former case, we 

observe that the best permutation (BP) for array reduction performs within 0.75 dB of the full 

array when 3 interfering layers are present. Performance degrades though, as expected, when 

the number of interfering layers grows. In the imperfect CSI case, the different array reduction 

methods perform closely to the full array, and even surpass its performance for large number 

of interfering layers. 

 

Figure 6: Validation results of array dimensionality reduction for KPI#1 
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The results for the channel learning part are illustrated in Figure 7, which shows the empirical 

probability density function of the channel reconstruction error. From this error distribution, 

it is observed that the channel reconstruction accuracy results is 24.96 dBs, whereas B#2 in 

the same conditions achieves 26.13 dB. Thus, the proposed method is 1.17 dB from the 

baseline, fulfilling the target for KPI#2. 

 

Figure 7: Validation results of channel learning for KPI#2 

3.2.6 Joint Sensing and Communications 

One of the expected main novelties of 6G systems is that of the inclusion of joint sensing and 

communication capabilities, where AI-based methods are expected to contribute to achieve 

the required sensing accuracy in order to be able to exploit the situational information 

obtained to improve communication performance. In this direction, CENTRIC has developed 

methods for joint sensing and communication that are applied to the problem of beam 

management in millimeter-wave (mmWave) systems. The method relies on proximal policy 

optimization (PPO), a reinforcement learning algorithm. 

The outcome and conditions of the validation of this enabler are summarized in Table 10, with 

the details provided below. 

Table 10: Validation Summary for Joint Sensing and Communications 

Joint Sensing and Communications (AAU) 

Validation 
approach 

Baselines KPIs Targets Achieved Result 

Link- and system-
level simulations 

B#1: X-TDMA KPI#1: 
Communication 

rate 
4 b/s/Hz 

Target achieved 
60% of time 

B#2: Random 
policy 

B#3: AoD-based KPI#2: Latency N/A N/A 

 

3.2.6.1 Validation assumptions 

The validation of the enabler is performed based on link and system-level simulations, with 

system parameters as expressed in Table 11. 



Horizon Europe project no. 101096379 
                                                               Deliverable D5.3                 

Page | 27 of 59 

Table 11: Validation parameters 

Parameter Value 

BS antennas 𝑵𝒕 32 

Carrier frequency𝒇𝒄 28 GHz 

Tx Power𝑷𝒕 15 dBm 

Noise Power𝝈𝝎
𝟐  -109 dBm 

Rician Factor𝑲  10 dB 

Time duration of a TTI 𝚫𝑻  10 ms 

Rate - Communication Threshold 𝒄  4 b/s/Hz 

Radar Cross Section 𝝈𝒓𝒄𝒔 25 m2 
Scenario Dimensions [100m ×100m] 
Number of UEs 𝑼  2 

Initialized Packet Number 𝑩𝒖,𝟎 𝐵𝑢,0  ∼  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(100,0.6) 

User Speed 𝒗  𝑣 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑣, 4),  𝑣 = 15,20,25,30 
 

In addition to the proposed PPO-based technique, three different baselines are evaluated: 

• B#1: The first baseline is based on using a round of periodic beam sweeping every X 

slots that are used for communication, in a deterministic manner. It is coined X-TDMA, 

due to the way communication and sensing slots are allocated. 

• B#2: The second baseline corresponds to a random allocation of beam sensing and 

communication slots, and it is coined Random. 

• B#3: The third baseline corresponds to the base station performing beam selection 

based on an estimate of the user’s channel angle of departure (AoD). A genie-aided 

version of this baseline, which assumes perfect knowledge of the AoD, is also 

implemented, representing an ideal, unachievable performance. 

The performance of the enabler is benchmarked against two different KPIs: 

• KPI#1: the first used KPI is communication rate. The simulations assume packets 

transmitted at a fixed rate corresponding to a spectral efficiency of 4 b/s/Hz, and the 

target is to minimize the amount of erroneous transmissions together with the 

transmissions used for sensing. 

• KPI#2: the second KPI is the communication latency, that is, the time it takes to 

successfully transmit a packet to the user (accounting for the time required for sensing, 

buffering, erroneous transmissions). Target for KPI#2 is to achieve a latency no larger 

than that of B#1. 

3.2.6.2 Validation results 

Validation results for this enabler have been described in part in [14], while further 

unpublished results are also included here. 

A snapshot of some of the validation results obtained for this enabler in terms of KPI#1 are 

included in Figure 8. In the left-hand figure, the CDF of the normalized throughput is 

represented in the right-hand figure, and the average normalized throughput is evaluated as 
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a function of the user’s speed. It is worth noting that throughput is normalized with respect 

to the data rate target for KPI#1. It can be observed from the CDF that the proposed PPO-

based method achieves throughput 1 about 60% of the time, indicating that this percentage 

of the time the achievable rate of the user is above the target value. It is clearly seen that the 

proposed method outperforms all other baselines in terms of average throughput and is the 

method closest to the unachievable performance of the genie-aided version of B#3. 

 

Figure 8: Validation results of Joint Communication and Sensing for KPI#1 

In terms of communication latency, while this has not strictly been evaluated, some evidence 

of the use of slots for transmissions for the different methods can be observed on the left-

hand side of Figure 9, whereas in the right-hand side the causes of the erroneous 

transmissions of each of the methods are analysed. It can be concluded that the PPO-based 

method allocates fewer resources for sensing than 1-TDMA while getting comparable packet 

drop performance, which results in lowered latency. Compared to 3/6-TDMA, the proposed 

method uses more resources for sensing, but leads to significantly lower amount of packet 

drops. In conclusion, the proposed reinforcement learning algorithm is capable of striking a 

balance behaviour, smartly allocating sensing and communication slots to achieve a better 

trade-off and overall increased data rates in comparison to the baselines. 

 

 

Figure 9: Validation results of Joint Communication and Sensing for KPI#2 

3.2.7 ML-enabled Symbol Modulation 

We now move on to a different type of enabler developed in CENTRIC’s WP3. In this case, an 

autoencoder neural network is used as a method to automatically learn symbol modulations 
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specially tailored to specific system conditions. The outcome and conditions of the validation 

of this enabler are summarized in Table 12, with the details provided below. 

Table 12: Validation Summary for ML-enabled Symbol Modulation 

ML-enabled Symbol Modulation (InterDigital) 

Validation 
approach 

Baselines KPIs Targets Achieved Result 

Link-level 
simulations 

B#1: QAM 
modulations 

KPI#1: Bit/Symbol-
error rate 

Lower than B#1 
under nonlinear 

impairments 

>3dB gain at SER = 
10%. 

KPI#2: Model 
generalization 

ability 

Generalization 
achieved for 

multiple 
modulation orders 

Generalization to 
8-ary and 16-ary 

modulations. 

 

3.2.7.1 Validation assumptions 

In this case, the method is validated by learning modulations for radio channels that include 

non-linear impairments. Link-level simulations are used to simulate the radio impairments, 

train an ML model under the impaired channel, and assess the performance of the learned 

symbol modulation. 

The method’s performance is evaluated against a single baseline: 

• B#1: as baseline, performance is compared with that of classical quadrature amplitude 

modulation (QAM). 

As evaluation metrics, we use the following KPIs: 

• KPI#1: bit and symbol error rate achieved by the method (no channel coding involved). 

The target is to achieve lower values than those achieved by B#1. 

• KPI#2: model generalization, in the sense of how well the model can generalize to 

different number of input bits (i.e., modulation order) is qualitatively assessed. 

3.2.7.2 Validation results 

The results obtained with the trained autoencoder under nonlinear impairments are 

presented in Figure 10, where the symbol-error rate (SER) performance of the learned 

constellations for 8-ary and 16-ary modulations is depicted against the system’s signal-to-

noise ratio. The SER for the corresponding traditional modulations is also depicted. 
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Figure 10: Validation Results for ML-enabled Symbol Modulation 

The results show that the target for KPI#1 of improving the SER performance with respect to 

traditional modulations (B#1) is achieved over a wide range of SNR, obtaining gains of around 

3 dBs at a SER of 10%. It is also observed that the target for KPI#2 is as well achieved, as the 

model is capable of generalizing well to, at least, two different settings of input bits, 

corresponding to 8-ary and 16-ary modulations. 

3.2.8 Multi-user MIMO Neural Receiver 

We now present the validation results for the multi-user MIMO neural receiver developed by 

NVIDIA in the context of WP3. This is one of the enablers in which the validation work has 

achieved a higher level of maturity. In addition to the work done in WP3 for development of 

the concept and evaluation of performance via Monte-Carlo simulations, there has also been 

work on the enabler in WP2 in order to accelerate inference with GPU processing. 

Furthermore, the receiver has also been evaluated in a proof-of-concept implementation 

based on hardware-in-the-loop in WP5. In this report, we focus on the validation of the 

concept’s performance via simulations, and the evaluation of the outcome of the acceleration. 

A detailed analysis of the validation achieved through the proof-of-concept implementation is 

reserved for D5.4, which will report all the proof-of-concept activities in CENTRIC. 

The outcome and conditions of the validation of this enabler are summarized in Table 13, with 

the details provided below. 

Table 13: Validation Summary for Multi-user MIMO Neural Receiver 

Multi-user MIMO Neural Receiver (NVIDIA) 

Validation 
approach 

Baselines KPIs Targets Achieved Result 

Link-level 
simulations and 

proof-of-concept 
with hardware-in-

the-loop 

B#1: receiver with 
LS-based channel 

estimation and 
LMMSE MIMO 

detector 

KPI#1: BLER for 
fixed 

computational 
complexity 

BLER close to B#2 
with lower 

computational 
complexity. 

<1 dB loss with 
respect to B#2 
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B#2: receiver with 
LMMSE-based 

channel estimation 
and K-Best MIMO 

detector 

KPI#2: Inference 
latency 

 

<1ms inference 
latency on NVIDIA 

A100 GPU 

1ms latency 
processing 132 

PRBs 

 

3.2.8.1 Validation assumptions 

The validation of the concept has been carried out using link-level simulations utilizing 

NVIDIA’s Sionna platform. The receiver has been evaluated in a 5G-compliant uplink 

configuration, using 3GPP compliant channel models as well as ray-traced channels for specific 

scenarios. 

Two baselines are used for comparison: 

• B#1: the first baseline consists of a 5G PUSCH MU-MIMO receiver with LS-based 

channel estimation and LMMSE MIMO detector, as available in open-source 

implementation in Sionna [15]. This can be considered as a state-of-art commercial 

receiver for 5G. 

• B#2: the second baseline is a 5G PUSCH MU-MIMO receiver with LMMSE-based 

channel estimation and K-Best MIMO detector, with implementation also available in 

Sionna [15]. This receiver can be considered very close to optimal, but has an infeasible 

computational complexity for current base stations. 

The KPIs used to assess the receiver’s performance are: 

• KPI#1: as first KPI, the block error rate (BLER) performance of the receiver evaluated 

at a specific computational complexity is used. The target for KPI#1 is to achieve values 

close to the BLER of B#2 at a lower computational complexity. 

• KPI#2: the second KPI relates to the inference latency incurred by the accelerated 

version of the neural receiver. The target for KPI#2 is to achieve an inference latency 

no larger than 1ms on a specific computational platform (NVIDIA A100 GPU). This 

would allow running the receiver in real time. 

3.2.8.2 Validation results 

Starting with the validation results for KPI#1, an illustration of the neural receiver performance 

for different number of active layers, 𝑁𝑇, is depicted in comparison to the baselines used in 

Figure 11. The complexity of the neural receiver has been tuned to be lower to that of B#2. As 

it can be observed, for a number of spatial layers spanning from 1 to 4, the neural receiver 

performs always within 1dB of B#2, and even achieves better performance for some SNRs. In 

addition, a very sizable gain (~3dB) is observed in comparison with B#1, which represents a 

practically achievable baseline. Further performance results for this enabler can be found in 

CENTRIC’s deliverable D3.2. 
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Figure 11: Validation Results of Multi-user MIMO Neural Receiver for KPI#1 

Validation results for KPI#2 are presented in Figure 12, where the inference latency (blue) and 

the SNR required to attain a BLER of 10% (green) are depicted versus the number of iterations 

run at the neural receiver. As it can be observed, the inference latency grows linearly with he 

number of iterations run at the receiver, whereas the SNR required to achieve the target BLER 

decreases. This illustrates the existing tradeoff between inference latency (and computational 

complexity) and receiver performance. The results show that, while the receiver performance 

would be slightly degraded, it is possible to limit the number of iterations of the receiver in 

order to achieve the target of real-time processing. 

 

Figure 12: Validation Results of Multi-user MIMO Neural Receiver for KPI#2 

 

3.3 Benchmarking of WP4 Enablers 

3.3.1 DCI Compression 

The first WP4 enabler that we present is that of DNN-based downlink control channel (DCI) 

compression. The objective of the enabler is to find way to perform lossless compression of 

the DCI information that leads to a smaller amount of bits required to transmit the DCI 
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information. The proposed lossless encoder is based on a transformer DNN architecture, and 

has been presented in [16]. 

The outcome and conditions of the validation of this enabler are summarized in Table 14, with 

the details provided below. 

Table 14: Validation Summary for DCI Compression 

DCI Compression (NNF) 

Validation 
approach 

Baselines KPIs Targets Achieved Result 

System-level and 
link-level 

simulations 

Huffman Coding 
[17] 

KPI#1: PDCCH 
reliability 

0.2 dB decoding 
gain 

Up to 0.3 dB gain 

 Deepzip [18] 
KPI#2: Lossless 

compression ratio 
10% improvement 

versus B#1 
18% improvement 

over B#1. 

 

3.3.1.1 Validation Assumptions 

The proposed compressor has been validated using Monte Carlo simulations with two 

different simulation tools. On the one hand, a system-level simulator with standard-compliant 

implementation of 5G NR Time Division Duplex symbol-based scheduling has been used to 

collect datasets to train the designed DNN. As the second tool, a link-level simulator used to 

model transmission of the Physical Downlink Control Channel (PDCCH) over additive white 

Gaussian noise (AWGN) channels has been used. This second simulator is used to assess the 

decoding performance of the PDCCH under the different methods of DCI compression 

considered. 

Two main baselines are used to evaluate the performance of the proposed enabler: 

• B#1: the first baseline is to use Huffman coding [17], a classical method for lossless 

compression. 

• B#2: the second baseline is another AI-based method that relies on recurrent neural 

networks (RNNs) and is coined Deepzip [18]. 

The proposed method and baselines are evaluated with respect to two KPIs: 

• KPI#1: the first KPI is the PDCCH reliability, measured in terms of its frame error rate 

(FER). The target for this KPI is to achieve 0.2 dB SNR gain in the decoding of the PDCCH 

compared to the current standard method. 

• KPI#2: the second KPI is the compression ratio achieved by the proposed lossless 

compression scheme, defined as the ratio between the original message bitlength and 

the compressed message bitlength. The target is to improve the compression ratio by 

10% compared to B#1. 

3.3.1.2 Validation Results 

We present now the validation results for the DCI compression enabler. Starting with KPI#1, 

an illustration of the results can be seen in Figure 13, where the different methods listed in 

the legend correspond to: 
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• PDCCH (39,100): The original PDCCH Polar encoding and decoding scheme with an 

encoded length of 100 bits (current standard) 

• HC: PDCCH with a lossless Huffman coding compressor (B#1). 

• Transformer-BCE: PDCCH with a lossless transformer-based compressor trained using 

binary cross-entropy (BCE) loss (proposed enabler) 

• Transformer-mFocal: PDCCH with a lossless transformer-based compressor trained 

using a modified focal loss (proposed enabler) 

• RNN-DeepZIP: PDCCH with a lossless recurrent neural network (RNN)–based 

compressor (B#2). 

• Joint Transf. & HC: PDCCH with a lossless compressor that jointly applies a 

transformer-based model and Huffman coding (proposed enabler) 

The results show that a decoding gain of up to 0.3 dB can be obtained with the proposed 

compression methods. 

 

Figure 13: Validation results of DCI Compression for KPI#1 

In connection with KPI#2, the compression ratio, a snapshot of the compression levels 

achieved by the proposed enabler and the baselines is depicted in Figure 14. The figures 

represent the original DCI messages and their compressed versions with the different 

compressors. White and light blue colour indicate bit values of 0 and 1, respectively. Dark blue 

colour indicates bits that remain null after compression, that is, they represent the overhead 

savings obtained with the compression methods. The outcome of this validation is that the 

compression ratio obtained by the proposed transformer-based solution showcases a gain of 

18% with respect to B#1, thus exceeding the original target of 10% improvement. 

Original DCI messages 

 

Huffman coding (B#1) 
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Deepzip (B#2) 

 
 

Proposed enabler 

 
 

Figure 14: Validation results of DCI Compression for KPI#2 

3.3.2 Task-oriented Cognitive Wireless Scheduling: collaborative navigation 

The first enabler in the are of task-oriented cognitive wireless scheduling is an AI-based 

solution to enable collaborative navigation between teams of robots, a scenario pertaining to 

the social manufacturing use-case of Industry 4.0 shop floor. The problem is illustrated in 

Figure 15 and Figure 16. Figure 15 shows the system model for the robotic navigation problem. 

In it, Two teams of 3 robots each need to reach their assigned destination as soon as possible 

and execute there a task in parallel.  

 

Figure 15: System model of the problem 

In Figure 16, the communication model of the problem is depicted. The role of the BS is to 

allocate the data channel to the team of robots that has less agents at the destination working 

on their task. The BS needs to ensure that the two task are executed in parallel, that is, that 

there is an equal number of robots at each of the two destinations. A team of robots can only 

move on the grid if they exchange their AI-emerged protocol messages. There are 6 robots 

requiring access to 3 shared uplink data channels and 3 shared downlink channels. 
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Figure 16: Communication model of the problem 

 

The outcome and conditions of the validation of this enabler are summarized in Table 15, with 

the details provided below. 

Table 15: Validation Summary for Task-oriented Cognitive Wireless Scheduling: 
collaborative navigation 

Task-oriented Cognitive Wireless Scheduling: Collaborative Navigation (OUL) 

Validation 
approach 

Baselines KPIs Targets Achieved Result 

Monte Carlo 
simulations 

B#1: round robin 
scheduling 

KPI#1: Parallel task 
execution 

(evaluated with 
Jain’s fairness index 

[1]) 

As close to 1 as 
possible 

Values between 0.9 
and 1. 

B#2: optimal 
navigation policy 

from [19] 

KPI#2: Latency to 
destination (in 

time-steps) 
As low as possible 

103.5 ± 20.2 time 
steps 

 

3.3.2.1 Validation Assumptions 

The validation of the enabler is based on Monte Carlo simulations on a computer 

implementation of the scenario described above. At the beginning of the simulation, the 6 

robots are placed randomly on the grid and they need to navigate to their assigned 

destination. Each team of 3 robots has an assigned goal position. The simulation is run until 

all the robots have reached the destination or is terminated after a maximum time-out 

number of steps. Within a team of robots, and ideal communication channel without packet 

errors and transmission delays is assumed. Each team of robots navigates on the grid to the 

destination by exchanging their AI-emerged messages proposed in [19]. The base station 

coordinates the team of robots via dedicated control channels. The communication channels 
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are considered ideal, as the focus is on the channel access logic. Hence, no assumptions are 

used on channel properties, channel estimation, or data encoding and decoding schemes. 

Two baselines are used for comparison of the proposed scheme: 

• B#1: the first baseline is a simple round-robin scheduling scheme for channel access. 

This baseline does not consider the level of task completion of the different teams of 

robots, so it is a non-goal oriented scheme. 

• B#2: the second baseline is the navigation policy proposed in [19]. This method ‘s goal 

is to improve the navigation time to destination of a team of robots. The baseline is 

used to extract the messages given by its optimal navigation policy. 

The proposed method is assessed in terms of two KPIs: 

• KPI#1: the first KPI is the degree of parallel task execution, and is measured using 

Janin’s fairness index [1]. The target is to reach a value as close to 1 as possible in the 

index, which corresponds to an equal share of resources. 

• KPI#2: the second KPI is the latency to destination, that is, the number of time-steps 

that the last robot of a team needs in order to reach the goal position. The target is to 

decrease it as much as possible. 

3.3.2.2 Validation Results 

The validation results for KPI#1 are depicted in Figure 17, where Janin’s fairness index is 

plotted for the proposed enabler and for B#1 against the number of robots that have reached 

the goal. It is clearly seen how the proposed method, in its two variants, produces always 

fairness much closer to the goal of 1 than a round robin scheduling scheme (B#1). In the 

proposed scheme, the BS monitors the number of robots at the goal from the current team 

and switches the channel access as soon as a new agent has reached the goal, leading to the 

increased fairness depicted in the figure. 

 

Figure 17: Validation results of collaborative navigation for KPI#1 
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The values for the latency to destination (KPI#2) are obtained from [19], by evaluating the 

freely available code provided by the authors. This corresponds to a value of 103.5 ± 20.2 time 

steps. This shows that enabling communication between robots provides guarantees of 

convergence of all the agents to their goals, which is something that cannot be guaranteed 

without communication. 

3.3.3 Task-oriented Cognitive Wireless Scheduling: semantic communication and control 

co-design 

As a second enabler in the domain of task-oriented cognitive wireless scheduling, we know 

present the validation results for a method for semantic communication and control co-design 

developed within WP4. The proposed method consists of a scheduling approach for multi-

device control systems that integrates self-supervised learning and split learning. The method 

relies on the introduction of time-series joint embedding predictive architecture (TS-JEPA) to 

model semantic control dynamics within the latent space. To enhance efficiency, a latent 

space-based scheduling scheme was implemented to optimize wireless resources utilization 

based on both control performance and channel condition. More details on the method can 

be found in [20]. 

The outcome and conditions of the validation of this enabler are summarized in Table 16, with 

the details provided below. 

Table 16: Validation Summary for Task-oriented Cognitive Wireless Scheduling: semantic 
communication and control co-design 

Task-oriented Cognitive Wireless Scheduling: semantic communication and control co-
design (OUL) 

Validation 
approach 

Baselines KPIs Targets Achieved Result 

Link-level 
simulations 

B#1: AI-based 
methods 

(autoencoder and 
supervised 
learning) 

KPI#1: Control 
performance – 

Normalized score 
In range [0.75—1] 

Within the target 
range 

B#2: classical 
schedulers 

(random, greedy, 
round-robin) 

KPI#2: 
Communication 

efficiency – 
Communication 

bits and 
Transmission 

latency 

Minimize while 
maintaining target 

for KPI#1 

10x faster 
transmissions than 
control sampling 

rate 

 

3.3.3.1 Validation Assumptions 

The validation was conducted in a simulation environment involving multiple independent 

non-linear inverted cart-pole systems with different control objectives, representative of 

industrial internet-of-things (IIoT) use cases such as smart factories. The link-level simulation 

framework accounts for the application layer (i.e., capturing frames through High frame-rate 

cameras for real-time sensing), data-link layer (i.e., implementing medium-access control 

(MAC) policies to prioritize robots for transmission), and physical layer (i.e., dynamically 
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allocating wireless resources). The BS centralizes transmission scheduling, ensuring that robot 

with poor control performance but favorable channel conditions are prioritized for 

communication with the remote controllers. Moreover, while the current validation assumes 

channel state information (CSIs) availability at the BS, ongoing work explores latent space-

based wireless dynamics prediction to predict future channels within the latent space [21]. 

Moreover, the base station is assumed to have access to the CSI of users for scheduling 

purposes, the control dynamics are assumed to be unstable on their own, and each control 

system operates independently but within a shared wireless network. 

The evaluation of the proposed semantic communication and control co-design framework is 

compared against two main categories of baselines. First, AI-based baselines that leverage AI 

techniques to optimize control performance within the latent space. Second, non-AI-based 

baselines are the traditional scheduling approaches to allocate wireless resources. These two 

types of baselines provide a comprehensive performance comparison in balancing 

communication efficiency and control performance. The selected baselines are: 

• B#1: as AI baselines, an auto-encoder and a supervised learning approach are used. 

• B#2: as traditional (non-AI) baselines, classical random, round-robin, and greedy 

scheduling algorithms are used. 

The method’s performance is characterized by using two KPIs: 

• KPI#1: the first KPI relates to the control performance, and the normalized score is 

used to measure it. The normalized score aims to measure how closely the control 

systems follow the desired objectives. The target range is [0.75-1.0], ensuring control 

performance remains high while optimizing wireless resources. 

• KPI#2: the second KPI characterizes the communication efficiency, by measuring the 

communication bits used and their transmission latency. The target is to minimize the 

bit transmission overhead while ensuring good control performance. 

3.3.3.2 Validation Results 

The validation results for both KPIs are depicted in Figure 18, where the left-hand figure 

presents the results for KPI#2 and the right-hand figure those of KPI#1. Starting with KPI#1, 

we observe that the two instances of the proposed TS-JEPA scheme (with and without 

prediction) stay always above a normalized score of 0.75. The instance using prediction 

displays a score that tends to the value 1 as the prediction horizon increases.  
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Figure 18: Validation results of Task-oriented Cognitive Wireless Scheduling: semantic 
communication and control co-design 

For KPI#2, we observe that the proposed method obtains much lower communication 

overhead than most of the evaluated baselines. In particular, the instance that uses prediction 

exhibits a communication overhead that vanishes as the prediction horizon grows. 

3.3.4 Emerging multiple-access protocols for specialized services 

Another enabler developed in WP4 is that of a method for emerging multiple-access schemes 

for specialized communication services. In particular, the use-case employed to validate the 

method is that of an in-factory scenario made of subnetworks. These subnetworks are 

installed in mobile robots, and power control of them is necessary in order to control 

interference while satisfying the communication requirements. 

The outcome and conditions of the validation of this enabler are summarized in Table 17, with 

the details provided below. 

Table 17: Validation Summary for Emerging multiple-access protocols for specialized 
services 

Emerging multiple-access protocols for specialized services (AAU) 

Validation 
approach 

Baselines KPIs Targets Achieved Result 

System-level 
simulations in in-
factory scenarios 

B#1: genie-aided 
KPI#1: buffer flush 

rate 
0.9 median value 0.88 median value 

B#2: random 
protocol KPI#2: signalling 

overhead 
50% reduction with 

respect to B#1 
80% reduction 

B#3: interference-
aware protocol 

3.3.4.1 Validation Assumptions 

The enabler is validated by means of system-level simulations of the targeted in-factory 

subnetworks scenario. It is assumed that a central entity is present and can perform power 

control based on signalling information received from the subnetworks. The system 

parameters used for the simulations are detailed in Table 18. 
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Table 18: Simulation parameters for Emerging multiple-access protocols for specialized 
services 

Parameters                                                          Values 

Deployment area 10 m ×10 m 

Subnetwork radius 1 m 

Operating frequency 6 GHz 

Bandwidth 10 MHz 

Path loss exponent 2.7 

Maximum speed of subnetworks                             3 m/s 

Maximum transmit power                                            20 dBm 

Minimum transmit power                                             0 dBm 

Number of subnetworks                                               10 

Number of devices per subnetwork                           1 

Distance between device and and AP                    0.5 m 

Noise spectral density                                               −174 dBm/Hz 

Payload                                                                                  64 bytes 

Latency 0.001s 

Threshold Spectral Efficiency (Rth)                       0.05 bps/Hz 

Capacity of AP buffer                                                       100 

 

For comparison, three non-AI baselines are implemented as well: 

• B#1: as ideal baseline, a genie-aided persistent power allocation algorithm is used. 

• B#2: the second baseline consists of a protocol that performs random actions. 

• B#3: the third baseline is and interference-aware power control protocol. 

The performance of the proposed method is characterized using two KPIs: 

• KPI#1: as first KPI, the buffer flush rate, that is, the median number of successful 

packets transmitted per time step, is used. The target for the KPI is to achieve a value 

of 0.9. 

• KPI#2: the second KPI relates to the signalling overhead incurred by the protocol, 

measured in bits. The target for this is to obtain a 50% reduction with respect to B#1. 

3.3.4.2 Validation Results 

The validation results for KPI#1 are displayed in Figure 19, which depicts the empirical CDF of 

the buffer flush rate obtained by the different methods. The median value achieved by the 

proposed enabler (MAPPO MAC) is of 0.88, which slightly falls short of reaching the target of 

0.9. Nonetheless, the results show a clear superiority of the proposed AI-based approach with 

respect to all of the evaluated baselines (except B#1, which represents an ideal unattainable 

performance). 
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Figure 19: Validation results of Emerging multiple-access protocols for specialized services 
for KPI#1 

The results for KPI#2 are presented in Figure 20, which shows the signaling overhead incurred 

by the different methods. It is observed that the proposed method (MAPPO) achieves low 

overhead compared to most of the baselines. Importantly, it exhibits an 80% reduction with 

respect to B#1, which exceeds the target of 50% reduction. It is important to know that this 

significant overhead reduction comes at the expense of only a slight degradation in 

performance with respect to B#1, as can be seen in Figure 19. 

 

Figure 20: Validation results of Emerging multiple-access protocols for specialized services 
for KPI#1 
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3.3.5 Federated Multi-Agent DRL for Radio Resource Management 

Continuing within the realm of industrial communication scenarios using subnetworks, we 

present now the results of a method for radio resource management based on federated 

multi-agent deep reinforcement learning (DRL). Details on the method can be found in [22]. 

The outcome and conditions of the validation of this enabler are summarized in Table 19, with 

the details provided below. 

Table 19: Validation Summary for Federated Multi-Agent DRL for Radio Resource 
Management 

Federated Multi-Agent DRL for Radio Resource Management (AAU) 

Validation 
approach 

Baselines KPIs Targets Achieved Result 

System-level 
simulations 

B#1: Graph 
colouring 

algorithm [23] 

KPI#1: User 
spectral efficiency 

6 b/s/Hz at 1st 
percentile 

Target achieved 

KPI#2: average RL 
reward 

12.5 Target achieved 

3.3.5.1 Validation Assumptions 

The method’s performance has been validated by means of system-level simulations, with 

parameter settings as specified in  

Table 20: Simulation parameters for Federated Multi-Agent DRL for Radio Resource 
Management 

Parameter Value 

Total factory area 180 m × 80 m 

Clutter type table Sparse 

Number of subnetworks 20 

Timestep 0.005 s 

Number of episodes 2000 

Number of steps per episode 200 

Subnetwork separation distance 1 m 

Subnetwork radius 1 m 

Subnetwork velocity 3 m/s 

Transmit power -10 dBm 

Number of frequency channels 4 

Carrier frequency 6 GHz 

Bandwidth per subnetwork 10 MHz 

Noise figure 10 dB 

Shadowing decorrelation distance 10 m 

Max action switch delay 10 

 

As baseline for performance comparison, one traditional (non-AI) method has been used: 

• B#1: the selected baseline is the centralized graph colouring algorithm described in 

[23]. 
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Two KPIs are used to characterize the methods’ performance: 

• KPI#1: User spectral efficiency, evaluated at low percentiles. This allows to characterize 

the performance of worst-case users. The target is to obtain a rate of 6 bits/s/Hz at the 

1st percentile of the spectral efficiency distribution. 

• KPI#2: The second KPI is the average reward obtained in the operation of the DRL 

agents. The target is to reach an average value of 12.5. 

3.3.5.2 Validation Results 

We showcase here a selection of the results that allows to quantify the selected KPIs. Further 

analysis can be found in [22]. 

With respect to KPI#1, the results obtained with different instances of multi-agent DRL are 

depicted in Figure 21, which depicts the cumulative density function (CDF) of the per-user 

spectral efficiency achieved. It is observed that a couple of the DRL based methods achieve 

the target of 6 bits/s/Hz at the targeted 1st percentile. All the proposed methods achieve much 

better performance than a random scheduling algorithm, and similar performance to that of 

a greedy method. However, they are outperformed by B#1, which is typically considered too 

complex to be implemented in practice. 

 

Figure 21: Validation results of Federated Multi-Agent DRL for Radio Resource 
Management for KPI#1 

Regarding KPI#2, results are presented in Figure 22, which depicts the reward over episodes 

of the operation of the reinforcement learning agents. Results are presented separately for 

the two DRL frameworks utilized: MADDQN is presented on the left-hand side, whereas 

different variants of MAPPO are depicted in the right-hand side. The results show that the 

MAPPO agents converge much faster to the target reward value than the MADDQN 

counterparts do. The achieved rewards after convergence tend to oscillate around the target 

of 12.5. 
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Figure 22: Validation results of Federated Multi-Agent DRL for Radio Resource 

Management for KPI#2 

3.3.6 ML-based Sub-band Selection 

Another enabler that deals with radio resource management in 6G In-factory subnetwork 

scenarios that has been developed in WP4 is a ML-based method for sub-band allocation 

between the different subnetworks. The method relies on a deep, fully-connected neural 

network architecture that is trained to maximize the number of subnetworks that fulfill certain 

rate criteria. The details of the approach are extensively described in [24]. 

The outcome and conditions of the validation of this enabler are summarized in Table 21, with 

the details provided below. 

Table 21: Validation Summary for ML-based Sub-band Selection 

ML-based Sub-band Selection (AAU) 

Validation 
approach 

Baselines KPIs Targets Achieved Result 

System-level 
simulations 

B#1: SISA algorithm 
[25] 

KPI#1: rate-
conforming 
subnetworks 

Median values of 9 
for low-rate and 3 
for high-rate 
subnetworks 

9 for low-rate and 
2.6 for high-rate 
networks. 

KPI#2: Training loss 
L 

L = 1 L = 1.1 

3.3.6.1 Validation Assumptions 

The performance of the proposed allocation method has been evaluated using system-level 

simulations, with parameters set as in Table 22. 

Table 22: Simulation parameters for ML-based Sub-band Selection 

Parameter Value 

Factory area, 𝐿 × 𝐿 20 m×20 m 

Number of subnetworks, 𝑁 20 

Number of sub-bands, 𝐾 4 

Subnetwork radius, 𝑅 1 m 

Number of devices per subnetwork, 𝐽 1 

Minimum distance between APs 2 m 

device to AP minimum distance, 𝑑𝑚𝑖𝑛 0.8 
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Shadowing standard deviation, λ 7.2 dB 

DL clutter density, 𝑟, clutter size, 𝑑𝑠 0.6, 2 

De-correlation distance, 𝑑𝑐 5 m 

Transmit power, Pm 0 dBm 

Bandwidth, 𝐵 40 MHz 

Carrier frequency, 𝑓𝑐  10 GHz 

Noise figure, NF 5 dB 

Low-rate subnetwork required SE, SEL
req

 0.4 

High-rate subnetwork required SE, SEH
req

 8 

 

A state-of-the-art algorithm relying on traditional model-based processing is used as baseline: 

• B#1: the sequential iterative sub-band allocation (SISA) algorithm [25]. 

Two KPIs are used to characterize the enabler’s performance: 

• KPI#1: the first KPI consists of the count of subnetworks that reach their required rate, 

which is coined rate-conforming subnetworks (RCS). To ensure fairness, the KPI is 

evaluated separately for high- and low-rate subnetworks, with their targets being a 

median value of 9 for low-rate subnetworks and a median value of 3 for high-rate ones. 

• KPI#2: The second KPI is is the loss value achieved by the neural network during 

training. The loss function is defined as  

𝐿 =
σ(𝑆𝐸𝑛

𝑟𝑒𝑞
−𝑆𝐸𝑛)

𝑆𝐸𝑛
𝑟𝑒𝑞 , where σ denotes the sigmoid function, 𝑆𝐸𝑛 denotes the rate 

achieved by the nth subnetwork, and 𝑆𝐸𝑛
𝑟𝑒𝑞

 is its rate requirement. The target value 

for the loss function is 𝐿 = 1. 

3.3.6.2 Validation Results 

Starting with KPI#1, the validation results for it are depicted in Figure 23, where the left-hand 

figure shows results for the low-rate networks and the right-hand one depicts the high-rate 

subnetworks. It can be observed that the propose DNN method performs equally to B#1 for 

the low-rate case, whereas it clearly outperforms it in the high-rate count. The target of RCS 

reaching 9 for the low-rate networks is achieved, but the method is slightly below the target 

for high-rate ones, reaching only a value of 2.6 instead of the targeted value of 3. Nonetheless, 

the proposed method is clearly better than B#1 and outperforms all other methods evaluated. 
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(a): Low-rate subnetworks (b): High-rate subnetworks 
Figure 23: Validation results of ML-based Sub-band Selection for KPI#1 

With respect to KPI#2, the training convergence curve of the model is depicted in Figure 24, 

which shows the value of the loss function over training epochs. The loss function achieves, 

with sufficient training iterations, a value slightly below 1.1, which is close but not reaching 

the target value of 1. 

 

Figure 24: Validation results of ML-based Sub-band Selection for KPI#2 

3.3.7 Joint Sub-band Allocation and Power Control for Outdated CSI Scenarios 

As a last enabler developed for the problem of radio resource allocation in In-factory 

subnetworks, we present now the results of an extension of the previous enabler which, in 

addition to performing sub-band allocation, also carries out power control. In addition, the 

method operates with outdated CSI. 

The outcome and conditions of the validation of this enabler are summarized in Table 23, with 

the details provided below. 

Table 23: Validation Summary for Joint Sub-band Allocation and Power Control for 
Outdated CSI Scenarios 

Joint Sub-band Allocation and Power Control for Outdated CSI Scenarios (AAU) 

Validation 
approach 

Baselines KPIs Targets Achieved Result 

System-level 
simulations 

B#1: SISA [25] 
combined with 
WMMSE [26] 

KPI#1: Spectral 
efficiency 

average SE = 
8.5@median 

per-user SE = 5.8 
@10-3 

average SE = 
8.7@median 

per-user SE = 5.8 
@10-3 

KPI#2: Training loss 10-3 0.6 · 10-3 

3.3.7.1 Validation Assumptions 

The proposed method is evaluated via system-level simulations, with parameters detailed in  

Table 24: Simulation parameters for Joint Sub-band Allocation and Power Control for 
Outdated CSI Scenarios 

Parameter Value 

Factory area, 𝐿 × 𝐿 20 m×20 m 
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Number of subnetworks, 𝑁 10 

Number of sub-bands, 𝐾 3 

Subnetwork radius, 𝑅 1 m 

Number of devices per subnetwork, 𝐽 1 

Minimum distance between APs 2 m 

device to AP minimum distance, 𝑑𝑚𝑖𝑛 0.8 

Shadowing standard deviation, λ 4 dB 

DL clutter density, 𝑟, clutter size, 𝑑𝑠 0.7, 1 

De-correlation distance, 𝑑𝑐 5 m 

Maximum transmit power, Pm 0 dBm 

Subband Bandwidth, 𝐵 40 MHz 

Carrier frequency, 𝑓𝑐  10 GHz 

Noise figure, NF 5 dB 

Sounding reference signal period, ∆𝑡 100 ms 

CSI buffer length, 𝑇 5 

Prediction length (delay) 𝜏 4 

 

For comparison of the method’s performance, a baseline has been defined as follows: 

• B#1: the baseline consists of the combination of two non-AI algorithms, one for sub-

band allocation and one for power control. Sub-band allocation is done by the already 

mentioned SISA algorithm [25], whereas power allocation is carried out using the 

weighted sum mean-squre error minimization (WMMSE) method [26]. 

As evaluation metrics, two KPIs are used: 

• KPI#1: as first KPI, the spectral efficiency (SE) achieved by the method is evaluated. In 

particular, two statistics of the SE are in focus: the median of the average SE, with a 

target value of 8.5 b/s/Hz, and the CDF value at 10-3 of the per-user SEs, with a target 

of 5.8 b/s/Hz. 

• KPI#2: the second KPI used is the training loss achieved during the training process, 

where the loss function used to train the method is the mean squared error (MSE). 

The target for KPI#2 is a value of 10-3.  

3.3.7.2 Validation Results 

The validation results for KPI#1, that is, the obtained CDF of the SE, is depicted in Figure 25. 

Subfigures (a) and (b) show the CDFs of the average and per-user SEs respectively under 

different levels of outdating of the CSI for the proposed enabler and B#1. It can be observed 

that the proposed method (DNN) is quite more robust to CSI outdating than the baseline. 

Subfigures (c) and (d) evaluate different predictors that can be used in combination with the 

proposed method. Fron these results, we can see that the average SE has a median value of 

8.7 b/s/Hz, slightly above target, whereas the per-user SE CDF has a value of 5.8 at 10-3, which 

fall slightly short from the target. 
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(a): CDF of the average SE across all 
subnetworks, comparing the proposed DNN-

based RRM and the benchmark under 
varying delay conditions. 

(b): CDF of the individual SE across all 
subnetworks, comparing the proposed 

DNN-based RRM and the benchmark under 
varying delay conditions. 

  
(c): CDF of the average SE across all 

subnetworks for DNN-based RRM with 
a (τ = 4)-sample delay, comparing sample-

and-hold, Attention-LSTM, and LSTM 
predictors. 

(d): CDF of the SE for all subnetworks for 
DNN-based RRM with a  (𝜏 = 4)-sample 

delay, comparing sample-and-hold, 
Attention-LSTM, and LSTM predictors. 

Figure 25: Validation results of Joint Sub-band Allocation and Power Control for Outdated 
CSI Scenarios for KPI#1 

To validate KPI#2, the training dynamics of the proposed DNNs are represented in Figure 26. 

Two different DNN architectures are evaluated: a plain LSTM network, and an LSTM network 

with dual attention. Of these, the network with attention achieves the lower loss, exceeding 

the target value of 10-3 and reaching 0.6 · 10-3. 
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Figure 26: Validation results of Joint Sub-band Allocation and Power Control for Outdated 
CSI Scenarios for KPI#2 

3.3.8 Learning-based HARQ 

Moving on to a different topic, we now present the validation results for a learning-based 

scheme developed to predict the result of the decoding process of a packet, hence being able 

to request early retransmissions before the channel decoding has finalized. 

The outcome and conditions of the validation of this enabler are summarized in Table 25, with 

the details provided below. 

Table 25: Validation Summary for Learning-based HARQ 

Learning-based HARQ (InterDigital) 

Validation 
approach 

Baselines KPIs Targets Achieved Result 

Mathematical 
analysis 

B#1: Legacy HARQ 
KPI#1: 

Retransmission 
latency 

50% decrease 
versus B#1 and 

B#2. 

Achieved when 
prediction accuracy 

larger than 0.8 

B#2: Proactive 
HARQ 

KPI#2: 
Retransmission 

overhead 
0.2 retransmissions 

Achieved when 
prediction accuracy 

larger than 0.85 

3.3.8.1 Validation Assumptions 

The method is validated by using mathematical analysis. For the analysis, 5G NR numerology 

and frame structure are assumed, with a subcarrier spacing of 60 KHz (i.e., 𝜇 = 3). In addition, 

it is assumed that the packet-error rate of initial transmissions is 10%. 

As baselines, two methods detailed in 3GPP standard are utilized: 

• B#1: as first baseline, the legacy HARQ process in [27] is used. 

• B#2: the second baseline is the proactive HARQ method in [27]. 

The enabler is evaluated using two KPIs: 
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• KPI#1: the first KPI is the retransmission latency in round-trip time (RTT), measured in 

slots. The target is to reach at least 50% decrease with respect to the baselines. 

• KPI#2: the second KPI used is the retransmission overhead, measured as the average 

number of retransmissions per original packet. The target for KPI#2 is to reach an 

average number of retransmissions of 0.2 for high prediction accuracies. 

3.3.8.2 Validation Results 

The validation results of the method are presented in Figure 27, with the left-hand figure 

relating to KPI#1 and the right-hand figure dealing with KPI#2. Starting with KPI#1, we see that 

the proposed method (eHARQ) always reduces latency in comparison with respect to B#1 and 

B#2. The reduction amounts to 55% and 50% respectively for a prediction accuracy of 0.8. 

For KPI#2, we see that the average number of retransmissions ranges from around 0.5 to 0.1 

as the prediction accuracy increases towards perfect prediction. The target value is reached 

whenever the prediction accuracy is, at least, 0.85. 

 

Figure 27: Validation results for Learning-based HARQ 

3.3.9 Probabilistic Time Series Conformal Risk Prediction 

This enabler uses probabilistic time-series conformal risk prediction techniques tested under 

channel prediction tasks, applied to the problems of power control under interference 

constraints and energy-efficiency hybrid automatic repeat request with incremental 

redundancy under decoding constraints. The method has been documented and analysed in 

[28]. 

The outcome and conditions of the validation of this enabler are summarized in Table 26, with 

the details provided below. 

Table 26: Validation Summary for Probabilistic Time Series Conformal Risk Prediction 

Probabilistic Time Series Conformal Risk Prediction (KCL) 

Validation 
approach 

Baselines KPIs Targets Achieved Result 

Link-level 
simulations 

B#1: Time-Serie 
Conformal 

Prediction [29] 

KPI#1: Prediction 
efficiency 

10% improvement 
against B#1 

Up to 25% 
improvement 
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B#2: Model-
predictive control 
based on Time-
Serie Conformal 
Prediction [30] 

KPI#2: Delay, 
decoding 

probability, 
throughput, and 
energy efficiency 

10% improvement 
over B#2 

25%, 15%, 20% and 
25%, respectively, 

for each of the 
metrics in KPI#2. 

3.3.9.1 Validation Assumptions 

Validation is performed through simulations of propagation conditions in Marienhof Square, 

Munich, using the Sionna Ray-Tracing software [31]. The system is assumed to comprise a 

fixed single-antenna transmitter, multiple moving receivers with pre-defined mobility patterns 

and random blockages. Communication occurs at a center frequency of 2.14 GHz with a 

bandwidth of 120 kHz. 

Two AI-based baselines are used to benchmark the method’s performance: 

• B#1: Time-Serie Conformal Prediction, a method proposed in [29]. This baseline is used 

to validate the prediction accuracy of the method. 

• B#2: Model-predictive control based on Time-Serie Conformal Prediction, as proposed 

in [30]. This baseline is used to benchmark the performance of the control tasks based 

on the prediction method. 

As evaluation metrics, two KPIs are considered: 

• KPI#1: the first KPI is the prediction efficiency, measured using the prediction set size. 

The target for this KPI is to improve 10% over B#1. 

• KPI#2: the second KPI is, in fact, a set of KPIs that should fulfil a joint target. The KPIs 

involved are: delay, decoding probability, throughput, and energy efficiency. The target 

is to improve (decrease for the first one, increase for all the rest) each of them 10% 

with respect to B#2. 

3.3.9.2 Validation Results 

The validation results for KPI#1 are represented in Figure 28. There, the proposed schemes, 

PTS-CRC and E-PTS-CRC, are benchmarked against B#1 for the task of channel prediction. All 

methods return prediction regions that cover the true channel evolution with a probability 

larger than 1-𝛼.  However, the proposed methods returns prediction sets that are in average 

more efficient (smaller). Across various miscoverage requirements 𝛼,  the proposed method 

PTS-CRC reduces the inefficiency up to 25% while ensuring the target miscoverage rate. 
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Figure 28: Validation results of Probabilistic Time Series Conformal Risk Prediction for 
KPI#1 

The results for KPI#2 are showcased in Figure 29. The HARQ-IR schemes are tested based on 

closed-loop model predictive control (MPC). The MPC is solved using predictions from the 

baseline and the proposed method. The performance metrics of the HARQ-IR algorithm 

obtained by solving the MPC problem using TS-CP (B#1) and the proposed scheme, PTS-CRC, 

are depicted. The parameter β determines the target rate of the HARQ-IR scheme, where a 

larger β corresponds to a higher target rate. We observe a significant increase in the energy 

efficiency of the HARQ-IR protocol when the MPC algorithm uses predictions from the 

proposed model. Specifically, we achieve up to a 1-slot delay reduction, a 15% increase in 

decoding probability, a 20% throughput gain, and a 25% improvement in energy efficiency. 

 

Figure 29: Validation results of Probabilistic Time Series Conformal Risk Prediction for 
KPI#2 

3.3.10 EMF Reduction via AI-enabled Cell-free Networking 

To finalize the presentation of validation results, we now treat the case of the enabler for 

electromagnetic field (EMF) exposure reduction by exploitation of the cell-free paradigm. 

Specifically, a method called Cluster-then-Match (CtM), an efficient algorithm making joint 

decisions about user assignment and power levels of access points, is evaluated. The method 

has been described in detail in [32]. 
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The outcome and conditions of the validation of this enabler are summarized in Table 27, with 

the details provided below. 

Table 27: Validation Summary for EMF Reduction via AI-enabled Cell-free Networking 

EMF Reduction via AI-enabled Cell-free Networking (CNR) 

Validation 
approach 

Baselines KPIs Targets Achieved Result 

System-level 
simulations 

B#1: Max Rate 
KPI#1: whole body 

SAR (SARwb) 
Not exceed 0.08 

W/kg 

Orders of 
magnitude below 

target 

3.3.10.1 Validation Assumptions 

The EMF exposure was assessed by estimating the specific absorption rate (SAR). More 

specifically, SAR was evaluated over the whole body, (SARwb), which is the power of the EMF 

absorbed over the entire body mass, by making use of computational approaches applied on 

different human models. SAR was chosen since, for high frequencies environments, it is listed 

as one of the main basic restrictions that are the actual exposure limits in the guidelines. Basic 

restrictions, indeed, are based on verified health effects and provided as internal physical 

quantities (as SAR in case of high frequencies). Moreover, since SAR is related to the body 

mass, it allows to account for the anatomical variability of human bodies. 

The performance of the proposed cell-free networking method was validated in indoors 

factory scenarios as standardized in 3GPP TR 38.901, which includes non-human network 

users and non-user humans. In this context, high quality decisions are needed about (i) which 

access point to use when serving an end user and (ii) how to manage access points, e.g., how 

to set their power levels. Following the human-centric networking paradigm, such decisions 

account not only for the performance of the network, but also for the level of electromagnetic 

field exposure to which human bodies incur and energy consumption. 

One baseline is defined to validate the method: 

• B#1: the selected baseline consists of a traditional (non-AI) optimization method 

seeking to maximize the sum-rate of the system. 

A single KPI is used to validate the enabler: 

• KPI#1: as KPI, the specific absoroption rate (SAR) is employed. The target for it is the 

value set in the guidelines for the ICNIRP, which corresponds to a SARwb of 0.08 W/kg 

for general public. 

3.3.10.2 Validation Results 

The validation results for the proposed CtM method are depicted in Figure 30 and Figure 31. 

It is observed in Figure 30 that the distribution of SARwb obtained by CtM is significantly lower 

than that of B#1 and several orders of magnitude below the target (ICNIRP limit). In Figure 31, 

The black marker on the color bar corresponds to the ICNIRP limit. Square and triangle 

markers correspond (resp.) to humans associated with the Duke and Ella models. Red stars 

represent access points. 
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As conclusion of these results, we remark that in all the conditions tested and for all the 

human model considered, SARwb levels resulted significantly below the limit values 

recommended (i.e. the target one), with at least one order of magnitude of difference. 

 

Figure 30: CtM and the MaxRate benchmark: SARwb values 

 

Figure 31: SARwb experienced by different humans under the MaxRate (left) and CtM 
(right) strategies. 
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4 Conclusions 

This deliverable has presented the validation results of the enablers developed in CENTRIC 

WPs 2, 3 and 4. We have restricted the presentation to include only validation by simulation 

results and theoretical analysis, as validation via proof-of-concept implementation will be 

reported in D5.4, due end of April 2025. 

Overall, 20 AI-based technological enablers have been validated, comprising the evaluation of 

a total of 37 KPIs. When evaluating the assessment of the KPIs, we observe a large proportion 

of enablers that have achieved the set targets. While the validation of the enablers has been 

done in isolation of each other, and integration of multiple components is required in order 

to faithfully assess the potential of AI to the air interface of 6G, these results constitute an 

encouraging prospect for the disruptive capabilities of AI techniques. We hope that follow-up 

projects in the upcoming phases of SNS-JU, with a higher target in terms of TRL, will be able 

to overtake the task of integrating some of the developed enablers in a complete prototype 

of 6G systems. 

We conclude by remarking that, while extensive, the list of enablers included in this 

deliverable is not exhaustive of all the work done in the project. There are still several months 

to go until the conclusion of CENTRIC, and we direct the attention of the interested reader 

towards the publication of final deliverables of each of the WPs in the project, where further 

techniques that were not ready at the point of publication of this deliverable will be included. 
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