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EXECUtiVE summary

This deliverable compiles the validation of KPIs of most of the Al-based technological enablers
that have been developed in the context of the CENTRIC project. In total, 20 enablers have
been validated, and 37 KPIs have been quantified. In addition, baselines for performance
reference, including classical and state-of-art Al techniques, have been included for each of
the enablers.

The report describes shortly the methodology followed for validation, and then presents an
overview of the whole ensemble of considered technologies, their respective KPIs, and the
corresponding performance targets.

Subsequently, we delve in detail into the results obtained with each of the methods
considered, organized by WP. Snapshots of the results are provided in order to better
understand the behaviour of the considered techniques.

While CENTRIC is a low TRL project, and integration of the enablers in higher TRL prototypes
or trials are needed to achieve definitive conclusions, the results presented in this report are
encouraging with respect to the potential of Al techniques to revolutionize the way the air
interface of 6G will be designed. Based on this results, we can confidently conclude that the
adoption of Al in the air interface of mobile communication systems has just started, and we
foresee a promising future for them in 6G systems and beyond.
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1 Introduction

The ambitions of 6G networks are to support low latency in the order of microseconds,
massive machine-type connectivity, ultra-high-speed connectivity, and energy efficiency
compared to 5G. Furthermore, it will enable immersive communications such as extended
reality (XR), high-fidelity holograms, etc. Artificial intelligence will be part of 6G, which will
help 6G networks enhance their performance and efficiency. The enhancement brought by Al
needs to be validated.

In D5.1, “Early results on KPIs/KVIs testing methodologies and benchmarking,” we have
identified the KPIs and KVIs relevant to assessing the impact of Al enabled air interface for 6G
networks. In this deliverable we present a comprehensive approach to validate Keys
performance indicators (KPI) for artificial intelligence (Al) native air interface for 6G networks.
For each work package, we provide the enabler technologies that we followed to validate the
KPlIs. Also, we present the validation assumptions that have been followed along with the
validation results. We have provided a benchmarking between the baseline and Al-based
algorithms/technologies.

While it was desired to also quantify the KVIs that were identified in D5.1, it was assessed that
the technology maturity level of the technologies was not sufficient to approach such
guantification. Quantification of KVIs requires integration of the enablers within a full model
of the system. Achieving such level of integration was never the goal of CENTRIC, and would
have deterred from achieving the impressive amount of enablers developed and validated
that the project has produced. Rather than attempting to quantify the KVIs without sufficient
basis to do so, which would have been a futile attempt, we refer the reader to CENTRIC
deliverable D5.1 where proxy KPIs that can help gauging the contribution of a given enabler
to the CENTRIC KVIs were identified.

The rest of the deliverable is structured as follows:

e Section 2 describes the validation methods used in this work and the process used to
select KPIs. In addition, an overview of all the enablers for which validation results are
provided in this deliverable is provided.

e Section 3 constitutes the main body of this report, and describes for each enabler the
KPIs that have been assessed, their target values, and the values attained by the
methods in the validation process. In addition, baselines for comparison of the
method’s performance are identified and assessed, including both traditional and Al-
based methods.

e Section 4 draws conclusions from the work.
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2 Benchmarking Methodology

2.1 Validation methods and selection of KPIs

The vast majority of enablers reported in this deliverable have been validated using computer
simulations, being link-level simulations or system-level simulations. A few of the enablers
have been accompanied by mathematical analysis, and this is remarked when applicable. In
addition, there are also activities in CENTRIC to validate a small subset of the enablers by
means of a proof-of-concept implementation in the lab. However, we do not discuss here
validation by experimental means, as there will be a deliverable wholly devoted to it (D5.4)
published by end of April 2025, where all details of the experimental validation will be
provided.

Regarding the selection of KPls, careful comparison of this deliverable with the previous D5.1
will reveal that not all the KPIs defined in D5.1 have been validated. Note that D5.1 KPIs were
selected as being KPIs of interest for each particular enabler. However, many of those KPls
necessitate integration in a more complete system to be properly evaluated, which is not
feasible given the low TRL that is the target of CENTRIC. The KPIs that have been chosen to be
validated are those that the developers of the enablers themselves have selected as being
feasible to validate with the degree of maturity of each enabler. We believe that this is a sound
approach, as attempting to quantify certain KPls in isolation of the rest of system components
may lead to useless or, even worse, misleading results.

2.2 Overview of enablers, KPIs and targets

Table 1 provides an overview of all the enablers whose validation results are reported in this
deliverable, organized by WP. For each of the enablers, the validated KPIs are described, as
well as their target values.

We emphasize that, while the table is large, containing overall 20 different technological
enablers developed in CENTRIC, the list is by no means exhaustive. While it covers most of the
work done in the project, there are some enablers in WPs 2, 3, and 4 which are still being
developed or are in the process of validation at the time of writing of this deliverable, as the
project still has some months before reaching its conclusion.

Table 1: Overview of all enablers validated in this deliverable, their KPIs and the
associated targets

WP2 Enablers

Enabler Validation KPIs Targets
(Partner) approach
In-context Link-level KPI#1: Mean-squared error vs 10% reduction with respect to
learning (KCL) simulations varying front-haul capacity B#1 and B#2
KPI#2: Mean-squared error vs 10% reduction with respect to
varying SNR B#1
Nullhop: Neural KPI#1: Inference speed 1ms
. RTL . .
Receiver . . . 30% reduction with respect to
. simulations; KPI#2: Inference complexity
Acceleration . B#2
synthesis and .
(Synthara) KPI#3: Block-error rate Improve with respect to B#1
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WP3 Enablers

Enabler

(Partner)
AIML-enabled
CSI Compression
(NOK)

Adaptive
quantization for
AIML-enabled
CSI compression

CSI  Prediction

Enhancements

(InterDigital)
Linear Coded
Multi-TRP CSI
Compression
(InterDigital)

UE channel
learning and
array
dimensionality
reduction
(Sequans)
Joint Sensing

and
Communications
(AAU)
ML-enabled
Symbol
Modulation
(InterDigital)
Multi-user
MIMO  Neural
Receiver
(NVIDIA)

Validation

approach
System-level
computer
simulations

Link-level
simulations

System-level
simulations

Computer
simulations
and
mathematical
analysis
Link-level
simulations

Link- and
system-level
simulations

Link-level
simulations

Link-level
simulations
and proof-of-
concept  with
hardware-in-
the-loop

KPIs

KPI#1: squared generalized cosine

similarity

KPI#2: mean and cell-edge user
throughput

KPI#1: SGCS

KPI#2: Signalling overhead

KP1#3:

KPI#1: Throughput (mean and 5%

Model generalization

percentile)

KPI#1: squared generalized cosine

similarity

KPI#1:

KPI#2:

KPI#1:

KPI#2:

KPI#1:

KP1#2:

KPI#1:

SNR

reconstruction accuracy

Communication rate
Latency

Bit/Symbol-error rate
Model generalization ability

BLER for fixed computational

complexity

KPI#2: Inference latency

Targets
10% improvement  against
baselines
10%  improvement  against
baselines

50% improvement over B#1, loss
smaller than 20% over B#2.

50% reduction with respect to
B#1.

Generalization over different
payload sizes
5% increase for mean

throughput, 15% increase for 5t
percentile.

Less than 0.2 loss with respect to
B#1.

<1 dB loss with respect to no
reduction

Within 2dB of B#2

4 b/s/Hz
N/A

Lower than B#1 under nonlinear
impairments
Generalization  achieved
multiple modulation orders
BLER close to B#2 with lower
computational complexity.

for

<1ms inference
NVIDIA A100 GPU

latency on

WP4 Enablers

DCI
Compression
(NNF)
Task-oriented
Cognitive
Wireless
Scheduling:
Collaborative
Navigation
(ouL)

System-level
and link-level
simulations
Monte Carlo
simulations

KPI#1:
KPI#2:

KPI#1:
(evaluated with Jain’s fairness index

(1])

KPI#2:

PDCCH reliability
Lossless compression ratio

Parallel task execution

Latency to destination (in

time-steps)
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10% improvement versus B#1

As close to 1 as possible

As low as possible



Task-oriented
Cognitive
Wireless
Scheduling:
semantic
communication
and control co-
design (OUL)
Emerging
multiple-access
protocols for
specialized
services (AAU)
Federated Multi-
Agent DRL for
Radio Resource
Management
(AAU)
ML-based Sub-
band Selection
(AAU)
Joint Sub-band
Allocation and
Power Control
for Outdated CSI
Scenarios (AAU)
Learning-based
HARQ
(InterDigital)
Probabilistic
Time Series
Conformal Risk
Prediction (KCL)
EMF Reduction
via Al-enabled
Cell-free
Networking
(CNR)

Link-level
simulations

System-level
simulations in
in-factory
scenarios

System-level
simulations

System-level
simulations

System-level
simulations

Mathematical
analysis

Link-level
simulations

System-level
simulations
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KPI#1: Control
Normalized score

performance -

KPI#2: Communication efficiency —
Communication bits and
Transmission latency

KPI#1: buffer flush rate

KPI#2: signalling overhead

KPI#1: User spectral efficiency

KPI#2: average RL reward

KPI#1:
subnetworks
KPI#2: Training loss L

rate-conforming

KPI#1: Spectral efficiency

KPI#2: Training loss
KPI#1: Retransmission latency

KPI#2: Retransmission overhead
KPI#1: Prediction efficiency

KPI#2: Delay, decoding probability,
throughput, and energy efficiency

KPI1#1: whole body SAR (SARwb)
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In range [0.75—1]

Minimize  while
target for KPI#1

maintaining

0.9 median value

50% reduction with respect to
B#1

6 b/s/Hz at 1% percentile

12.5

Median values of 9 for low-rate
and 3 for high-rate subnetworks
L=1

average SE = 8.5@median
per-user SE=5.8 @103

103

50% decrease versus B#1 and
B#2.

0.2 retransmissions

10% improvement against B#1

10% improvement over B#2

Not exceed 0.08 W/kg
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3 Benchmarking of CENTRIC Enablers

3.1 Benchmarking of WP2 Enablers
We begin by

3.1.1 In-context learning

In-context learning is a learning technique from the family of meta-learning methods. It can
be seen as a way to adapt the outcomes of a given model to a particular task without a need
for fine-tuning the model parameters. Instead, a set of example input-output pairs are
provided to the model as context for the task — hence the name, in-context learning. In
CENTRIC's WP2, n-context learning techniques have been theoretically developed and
evaluated in an example application context corresponding to that of MIMO channel
equalization.The outcome and conditions of the validation of this enabler are summarized in
Table 2, with the details provided below.

Table 2: Validation Summary for In-context learning

In-context learning (KCL)

Validation . .
TR Baselines KPIs Targets Achieved Result
Bftl: (Trac.jltl'lonal) KPI#1: Mean- 10% reduction with
Linear Minimum squared error vs respect to B#1 and Target exceeded
Link-level Mean Squared varying front-haul P (>50% reduction)
B#2
computer Error (L-MMSE) capacity
Simulation B#2: (Al) Model KPI#2: Mean- . . Target exceeded
109 h
Agnostic Meta- squared error vs Or/;e::tct'loog#ﬁlt from most SNR
Learning (MAML) varying SNR P values

3.1.1.1 Validation assumptions and measured KPIs

The performance of the in-context learning (ICL)-based MIMO equalizer has been validated
via link-level computer simulations using simple single-user MIMO channels as described in
[2] as well as under cell-free multi-user MIMO systems [3]. In this report we mainly focus on
the latter results A deep receiver that leverages in-context learning and sequence models to
adapt to time-varying channel conditions has been implemented and tested. In addition to
the ICL-based equalizer, two baselines have been implemented:

e B#1: The first baseline is a traditional L-MMSE based MIMO equalizer, such as
described in [4].

e B#2: The second baseline is also a deep receiver that exploits a concept of meta-
learning called model-agnostic meta-learning (MAML) [5].

For all methods, the performance of the equalized channel is evaluated by calculating the
mean square error (MSE) between the transmitted and equalized signals. This is measured
under two different conditions, leading to the definition of two KPlIs:
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e KPI#1: In the first scenario, the MSE is evaluated against the fronthaul capacity of the
assumed cell-free massive MIMO system. With low fronthaul capacity, quantization
errors introduced by the fronthaul are expected to impair all methods’ performance.

o KPI#2: In the second scenario, the MSE is evaluated against different signal-to-noise
ratio (SNR) conditions, with the goal of making the proposed equalizer be robust to
the relevant SNR range.

For both KPls, the target is to reduce MSE by 10% with respect to the baselines.

3.1.1.2 Validation results

The validation results for the proposed MIMO equalizer have been reported in [2] and [3], and
we summarize the main outcome here.

In the case of KPI#1, the obtained MSE results are presented in Figure 1, where the MSE
achieved by the proposed equalizer is presented against that of B#1 (LMMSE) and B#2
(MAML). In addition, the results of B#1 with unconstrained fronthaul are also presented. Two
situations are evaluated: one in which the pilot signals used for channel estimation are
orthogonal across the different users, and another in which pilot contamination is present. It
can be observed that the proposed equalizer exhibits particularly good performance in the
latter situation, achieving an MSE that is twice as small as that of LMMSE equalization and
several orders of magnitude smaller than the MSE of the MAML-based receiver.

Orthogonal Pilots Pilot Contamination
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Figure 1: Validation results of In-Context Learning for KPI#1 [3]

The validation of KPI#2 focuses on evaluating the robustness of the proposed ICL-based
equalizer against different SNRs, and particularly under pilot contamination conditions. A set
of results are depicted in Figure 2, where the MSE of the proposed enabler and that of B#1
are assessed under different levels of pilot contamination. It is worth noting that the plot “ICL
without LS tokens” represents the same ICL-based receiver which has not utilized context
about large-scale fading conditions of the channel. The results show a significant advantage
of the ICL-based equalizer in all scenarios with pilot contamination (Pilot Reuse > 0) for all
SNRs above -5 dB. They also show that incorporating large-scale fading information into the
receiver is crucial for it to outperform traditional approaches.
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Figure 2: Validation results of In-Context Learning for KPI#2 [3]
3.1.2 Nullhop: Neural Receiver Acceleration

The second enabler that will be evaluated in WP2 is the work done by Synthara?? to accelerate
the neural receiver publicly available in NVIDIA’s Sionna platform [6].

Table 3: Validation Summary for Nullhop: Neural Receiver Acceleration

Nullhop: Neural Receiver Acceleration (Synthara)

Validation . .
Baselines KPIs Targets Achieved Result
approach
B#1: Receiver
based on LS KPI#1: Inference
. . 1ms 70ms
. . channel estimation speed
RTL simulations; [6]
thesis and
syn e5|.s an. . KP1#2: Inference 30% reduction with 60% sparsity
power estimation B#2: Original . .
. complexity respect to B#2 increase
neural receiver .
madel [6] KPI#3: Block-error Improve with Achieved
rate respect to B#1

3.1.2.1 Validation assumptions

The receiver’s workload has been mapped and deployed onto Nullhop, which is and Al model
and convolutional neural network accelerator. The receiver has then been simulated with EDA
tools, allowing RTL simulations that reproduce the operations carried out in silicon with high
precision. With this, accurate estimates of the latency and throughput achieved by the model
can be obtained. Similarly, this setup allows to carry out estimation of the power consumption
that the model would incur. Using the aforementioned tools, the receiver in [6] has then been
guantized and sparsified in order to reduce its complexity and the inference latency.

Two baselines are used for evaluation of the work:

e B#1: the first baseline, used to compare the block error-rate (BLER) of the accelerated
receiver, is the traditional (not Al based) receiver available in [6]. It is a receiver based

on least-squares (LS) channel estimation, and using minimum mean squared error
(MMSE) equalization.
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e B#2: the second baseline is that of the original neural receiver model in [6]. This
baseline is mainly used to evaluate the inference complexity reductions achieved by
the accelerated version of the neural receiver model.

As evaluation metrics, two KPls are used:

o KPI#1: the first KPl used to evaluate the accelerated model is the inference speed. The
target is to reach 1ms inference time, which would allow running the receiver model

in real-time.

o KPI#2: the second KPI is the inference complexity, with the target being a 30%

decrease with respect to B#2.

e KPI#3: the third KPI is the block-error rate (BLER) achieved by the accelerated receiver.
The target for it is to improve with respect to B#1.

3.1.2.2 Validation results

At the time of publication of this deliverable, work is still ongoing in the acceleration of the
model. Hence, the results reported here will be succinct and should be understood as a
temporary snapshot in the development process.

For KPI#1, the current inference speed achieved is 70ms, whereas for KPI#2 a sparsity increase
of 60% with respect to the original model has been achieved. These results are still far from

the target, in particular for KPI#1, but work is ongoing on further closing the gap.

In term of KPI#3, the BLER achieved by the accelerated receiver and the baselines is depicted

in

100 T
perfect_csi

-
—- baseline_|s \-\ 7‘\‘\
nvidia_original N\ N\
synthara_guantized X \
\ \
107" 3 £}
5 \
AN \
& N, N
o X \
o \ 3\
1072 LY 2N
b N
i N
| A\
|
S !
1077 o |
| | ‘ | ! |
-0.5 0.0 0.5 1.0 15 2.0 2.5 3.0
Ep/Ng (dB)

Figure 3: Validation results of Nullhop: Neural Receiver Acceleration for KPI#3

Final results will be reported in the corresponding WP2 deliverable towards the end of the

project.

3.2 Benchmarking of WP3 Enablers
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3.2.1 AlML-enabled CSI compression

The problem of channel state information (CSI) compression, that is, how to efficiently encode
information of on the channel experienced by one user in order to feed the information back
to the base station for precoding purposes, has achieved increasing relevance as the
dimensions of antenna arrays grow at both network and terminal side. There is a fundamental
trade-off between the accuracy of the encoded CSI and the amount of bits it is required to
transmit it. In this enabler, deep neural networks (DNNs) are used to perform encoding and
decoding of CSI, with the goal of achieving a better compromise between CSI accuracy and
the overhead that its transmission entails.

The outcome and conditions of the validation of this enabler are summarized in Table 4, with
the details provided below.

Table 4: Validation Summary for AlIML-enabled CSI compression

AIML-enabled CSI Compression (NOK)

Validation . .
Baselines KPIs Targets Achieved Result
approach
B#1: Enhanced KPI#1: squared .
. . 10% improvement .
Type Il Codebook generalized cosine . . 12% improvement
TR against baselines
System-level [7] similarity
\c/:omputer 16% and 17%
. . KPI#2: i f
simulations B#3: Transformer uCEIE 10% improvement improvement for

mean and cell-
edge user,
respectively.

cell-edge user

based encoder [8] T

against baselines

3.2.1.1 Validation assumptions

The enabler validation has been carried out using system level simulations considering 7 tri-
sectorial sites and using 3GPPP standardized channel models. In addition, it is assumed that
the encoded CSI feedback channel from user to their base station is ideal. This implies the
wireless channel does not introduce further errors in the encoded feedback, but the
guantization error including by the CSI encoding process is still present.

In addition to the proposed enabler, two other methods are used as reference baselines, one
based on the current standard CSI codebook and one being another DNN based method:

e B#1: the first baseline consists of utilizing the 3GPP Release 16 Enhanced Type I
codebook [7] to perform the CSI encoding, as currently utilized in 5G NR systems.

e B#2: the second baseline consists for a DNN model based on transformers, and is
described in [8].

The performances of the different methods are validated using two different KPIs:

o KPI#1: the first KPI is the squared generalized cosine similarity, which is a typical
measure of the similarity between channel response vectors.
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e KPI#2: as second KPI, different statistics of the throughput are used, in particular, the
mean throughput and the cell-edge user throughput, that is, the 57 percentile of the
throughput distribution.

For both KPls, the target is to achieve a 10% improvement with respect to the baseline.

3.2.1.2 Validation results

A complete description of the validation results is currently being worked on and will be made
available in a publication soon. For the moment, the preliminary results show the following
improvements with respect to the baselines:

e KPI#1:a 12% improvement in squared generalized cosine similarity has been obtained.
e KPI#2: in terms of user throughput, 16% improvement has been achieved for mean
throughput, while the improvement for cell-edge users is of 17%.

For both evaluated KPIs, the proposed method achieves the initial target.

3.2.2 Adaptive quantization for AIML-enabled CSI compression

Staying within the realm of the CSI compression problem, another related enabler developed
in CENTRIC is that of Al-based CSI compression using adaptive quantization. Here, not only the
CSl is compressed by an Al model, but the way the compressed information is quantized is
adaptive, that is, going beyond uniform quantization.

Results for this enabler have been contributed to 3GPP in [9]. The outcome and conditions of
the validation of this enabler are summarized in Table 5, with the details provided below.

Table 5: Validation Summary for Adaptive Quantization for AIML-Enabled Compression

Adaptive Quantization for AIML-Enabled Compression (InterDigital)
Validation

Baselines KPIs Targets Achieved Result
approach
50% improvement >100%
B#1: uniform over B#1, loss improvement over
. KPI#1: SGCS
quantizer smaller than 20% B#1, 20% loss over
Link-l | over B#2. B#2
. nke e.ve . . 50% reduction with
simulations Signalling overhead ~50%
L respect to B#1.
B#2: quantization- .
Generalization over
aware model Model

different payload Achieved

generalization .
sizes

3.2.2.1 Validation assumptions

The proposed enabler has been evaluated using link-level simulations. Similarly to the
previous enabler, the feedback channel between the user and the base station over which the
compressed and quantized CSl is exchanged is assumed to be error-free — that is, the CSl itself
still contains errors due to compression and quantization, but the transmission of the
information over the channel suffers no packet or bit errors.

Two baselines are used to benchmark the performance of the enabler:
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e B#1: the first baseline is that of using a classical, uniform quantizer [9].
e B#2: the second baseline is provided by a compression model that has been trained
aware of the type of quantization used.

Using these baselines, three KPIs are assessed:

o KPI#1: similarly as the previous enabler, the quality of the compressed CSl is assessed
using squared generalized cosine similarity (SGCS). Target for this KPI is to improve 50%
over B#1 and have a loss smaller than 20% with respect to B#2.

e KPI#2: as a second KPI, the signalling overhead (in bits) incurred by the proposed
method is evaluated. The target is to reduce the overhead by 50% with respect to
uniform quantization (B#1) with 4 bits.

o KPI#3: the third KPI is the model generalization capability, which is evaluated
qualitatively.

3.2.2.2 Validation results

Validation results are reported in [9], and the highlights are included in Figure 4. From here,
we can evaluate all the above defined KPIs.

Regarding KPI#1, adaptive quantization for CSI compression improves SGCS by more than
100% for low overhead compared to uniform quantization. Adaptive quantization shows
around 20% performance loss compared to quantization-aware CSI compression for the
lowest quantization (2 bits). For higher quantization (higher overhead) the loss is always below
10% and gap diminishes as overhead increases.

For KPI#2, signaling overhead can also be evaluated based on Figure 4. There, we can observe
that adaptive quantization for CSI compression can achieve around 50% overhead reduction
(from 256 bits to 128 bits) with similar SGCS performance compared to uniform quantizer.
Finally, regarding KPI#3, it is observed that adaptive quantization for CSI compression can
achieve generalization to support different payload sizes with minimal performance loss on
SGCS. For the quantization-aware model, different models need to be trained for different
payload sizes (i.e., for different quantization levels), which complicates its practical
implementation.

SGCS vs Payload Size - 64 Latents SGCS vs Payload Size - 128 Latents

0.6500 0.6500

0.6000 0.6000 /

0.5500 05500
05000 0.5000 / —=—Clustering ALL
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0.4000 0.4000
CDF Per

0.3500 0.3500 Uniform Q

0.3000 0.3000 Q-aware 2-bit

——

SGCS
SGCS
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Figure 4: Validation results of Adaptive Quantization for AIML-Enabled Compression [9]
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3.2.3 CSl Prediction Enhancements

A third enabler on the topic of CSI compression and prediction is presented here. In this case,
the power of Al models is used not just to compress the CSl information, but also to attempt
to predict future CSI values. The enabler has been described in a contribution to 3GPP
standardization [10].

The outcome and conditions of the validation of this enabler are summarized in Table 6, with
the details provided below.

Table 6: Validation Summary for CSl Prediction Enhancements

CSI Prediction Enhancements (InterDigital)

Validation

Baselines KPIs Targets Achieved Result
approach
B#1: Sample-and- 5% increase for Target achieved for
System-level hold Throughput (mean = mean throughput, certain resource
simulations B#2: Kalman and 5™ percentile) 15% increase for utilization
Filtering 5% percentile. conditions

3.2.3.1 Validation assumptions

For this enabler, system level simulations following the 3GPP simulation assumptions for UE-
sided CSI prediction reported in [11].

Two baselines are used to benchmark the performance of the enabler:

e B#1: the first baseline, sample-and-hold, simply predicts that the CSI will stay constant
until the next CSI measurement [10].

e B#2:the second baseline the Kalman Filter, it is a traditional predictor used in statistical
signal processing [10].

Using these baselines, a single KPI is assessed for this enabler:

o KPI#1: the throughput achieved by the system under the different prediction methods.
In particular, two throughput statistics are used: the mean throughput, and the 5
percentile of the throughput distribution, which is typically referred to as the cell-edge
user throughput. The target for the KPI is to reach a 5% improvement in mean
throughput, and 15% improvement for cell-edge user throughput.

3.2.3.2 Validation results

A sample of the results obtained with the enabler is provided in Figure 5, while a more detailed
analysis can be found in [10]. On the left-hand side of the figure, we can find the mean
throughput gains of the proposed CSI prediction approach evaluated against B#1 and B#2
under different resource utilization (RU) conditions. The transformer based AIML model CSI
prediction performs 10% and 8% better than B#1 and B#2 respectively in terms of mean
throughput for 25% resource utilization. The model performs 27% and 25% better than B#1
and B#2 in terms of 5"-percentile throughput for 70% resource utilization.
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Figure 5: Validation results of CSI Prediction Enhancements

3.2.4 Linear Coded Multi-TRP CSI Compression

As the last enabler in the domain of CSI feedback enhancements, we present now the results
of a method for CSI compression in a multi transmission-reception point (TRP) setup. The
method relies on linear coding to protect against the loss of uplink control information (UCI).
The outcome and conditions of the validation of this enabler are summarized in Table 7, with
the details provided below.

Table 7: Validation Summary for Linear Coded Multi-TRP CSI Compression

Linear Coded Multi-TRP CSI Compression (InterDigital)

Validation

Baselines KPIs Targets Achieved Result
approach
Computer Target achieved
. p KPI#1: squared Less than 0.2 loss . & -
simulations and B#1: lossless . . . with some specific
. . generalized cosine with respect to . .
mathematical compression S linear coding
. similarity B#1. .
analysis matrices.

3.2.4.1 Validation assumptions

The validation for this enabler is still in a preliminary state, with simple computer simulations,
together with mathematical analysis, have been used.

As baseline for evaluation of the results, a single method is used:

e B#1: the baseline is obtained by lossless CSI compression, which represents an ideal
case.

Using these baselines, a single KPI is assessed for this enabler:

o KPI#1: squared generalized cosine similarity is the KPI used to assess the enabler. The
target for the method is to obtain a loss smaller than 0.2 whenever the UCl in a packet
is lost.
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3.2.4.2 Validation results
A snapshot of validation results obtained in a particular scenario is depicted in Table 8, where
the shaded row represents the results obtained for the proposed method. The “Direct
decode” method represents B#1, and the numbers indicate the SGCS obtained with the
different matrices that can be used to perform linear encoding (A1, A2, and A3).

Table 8: Validation Results for Linear Coded Multi-TRP CSI Compression

Linear coded multi TRP CSI compression

SGCS Al A2 A3 Direct decode
H, 0.49 0.76 0.87 0.89
H, 0.90 0.90 0.89 0.89
H; 0.90 0.90 0.89 0.89

The obtained results show that the method’s performance depends on the matrix used. We
observe that linear coded compressed multi-TRP CSI feedback can achieve 0.76 (0.13 loss) and
0.87 (0.02 loss) for SGCS with specific linear coding matrices (A2 and A3) when the
corresponding UCI feedback is lost, hence reaching the target for these two matrices.

3.2.5 UE channel learning and array dimensionality reduction for Al-based MU-MIMO
precoding

This enabler evaluates two complementary techniques. The first one consists of an array
dimensionality reduction that can lower the complexity of MU-MIMO processing. The second
one consists of an approach for channel learning carried out at the UE side. The outcome and
conditions of the validation of this enabler are summarized inTable 9, with the details provided
below.

Table 9: Validation Summary for UE channel learning and array dimensionality reduction

UE channel learning and array dimensionality reduction (Sequans)
Validation

Baselines KPIs Targets Achieved Result
approach
B#1: Capacity of <1 dB loss with
MIMO channels KPI#1: SNR respect to no 0.75 dB loss
Link-level [12] reduction
simulations KPI#2:
BH2: (;hannel reconstruction Within 2dB of B#2 L /GBS
learning [13] B#2
accuracy

3.2.5.1 Validation assumptions

The validation of the enabler is carried out based on link-level simulations performed in
MATLAB. The dimensionality reduction method is tested in a system consisting of a UE with a
receive array of 8 antenna elements, targeting a reduction to a 4-antenna effective array. An
exhaustive search over all possible 4-antenna combinations. For the channel learning
technique, on the other hand, a base station with 32 transmit antennas is considered, serving
4 closely spaced single-antenna users.
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Two theoretical baselines are used to benchmark the proposed techniques, presented below:

e B#1: as first baseline, used for the dimensionality reduction techniques, the capacity
bound of MIMO Gaussian channels in [12].

e B#2: the second baseline, used to evaluate channel learning, is the method presented
in [13].

As KPIs for evaluation of the methods, two are considered:

o KPI#1: the first KPI, used to assess the dimensionality reduction technique, is the SNR
obtained with the best permutation of antenna reduction. This KPI is evaluated under
two conditions: perfect, and imperfect CSI. In the former case, the target is to
experience less than 1 dB loss of SNR in the effective, reduced array with respect to
the full array. In the case of imperfect CSI, the target is to outperform the full array.

o KPI#2: The second KPI, used to evaluate the channel learning method, is defined as
the channel reconstruction accuracy per channel matrix element. The target is to
perform within 2 dB of B#2.

3.2.5.2 Validation results

Here, we show a snapshot of results for the two KPIs defined above. Note that some results
for the dimensionality reduction technique have already been reported in CENTRIC
deliverable D3.3. Further results for both array dimensionality reduction and channel learning
techniques will be documented in D3.5.

The results for the SNR obtained with the dimensionality reduction technique are reported in
Figure 6, where the left-hand side figure represents the perfect CSI case, and the right-hand
figure shows the case in which channel estimation errors are present. In the former case, we
observe that the best permutation (BP) for array reduction performs within 0.75 dB of the full
array when 3 interfering layers are present. Performance degrades though, as expected, when
the number of interfering layers grows. In the imperfect CSl case, the different array reduction
methods perform closely to the full array, and even surpass its performance for large number
of interfering layers.
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Figure 6: Validation results of array dimensionality reduction for KPI#1
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The results for the channel learning part are illustrated in Figure 7, which shows the empirical
probability density function of the channel reconstruction error. From this error distribution,
it is observed that the channel reconstruction accuracy results is 24.96 dBs, whereas B#2 in
the same conditions achieves 26.13 dB. Thus, the proposed method is 1.17 dB from the
baseline, fulfilling the target for KPI#2.
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Figure 7: Validation results of channel learning for KPI#2

3.2.6 Joint Sensing and Communications

One of the expected main novelties of 6G systems is that of the inclusion of joint sensing and
communication capabilities, where Al-based methods are expected to contribute to achieve
the required sensing accuracy in order to be able to exploit the situational information
obtained to improve communication performance. In this direction, CENTRIC has developed
methods for joint sensing and communication that are applied to the problem of beam
management in millimeter-wave (mmWave) systems. The method relies on proximal policy
optimization (PPO), a reinforcement learning algorithm.

The outcome and conditions of the validation of this enabler are summarized in Table 10, with
the details provided below.

Table 10: Validation Summary for Joint Sensing and Communications

Validation

Baselines KPIs Targets Achieved Result
approach
B#1: X-TDMA KPI#1: Target achieved
Link- ar\d syst.em- B#2: Réndom Communication 4 b/s/Hz 60% of time
level simulations policy rate
B#3: AoD-based KPI#2: Latency N/A N/A

3.2.6.1 Validation assumptions

The validation of the enabler is performed based on link and system-level simulations, with
system parameters as expressed in Table 11.

Page | 26 of 59



Horizon Europe project no. 101096379 @
Deliverable D5.3
CENTRIC
Table 11: Validation parameters

Parameter Value

BS antennas N, 32
Carrier frequencyf 28 GHz

Tx PowerP, 15dBm
Noise Powerd?, -109 dBm
Rician FactorK 10dB
Time duration of a TTI AT 10 ms
Rate - Communication Threshold ¢ 4 b/s/Hz
Radar Cross Section 0. 25m?
Scenario Dimensions [100m x100m]
Number of UEs U 2
Initialized Packet Number B, o Byo ~ Binomial(100,0.6)
User Speed v v ~ Normal(v,4), v = 15,20,25,30

In addition to the proposed PPO-based technique, three different baselines are evaluated:

e B#1: The first baseline is based on using a round of periodic beam sweeping every X
slots that are used for communication, in a deterministic manner. It is coined X-TDMA,
due to the way communication and sensing slots are allocated.

e B#2: The second baseline corresponds to a random allocation of beam sensing and
communication slots, and it is coined Random.

e B#3: The third baseline corresponds to the base station performing beam selection
based on an estimate of the user’s channel angle of departure (AoD). A genie-aided
version of this baseline, which assumes perfect knowledge of the AoD, is also
implemented, representing an ideal, unachievable performance.

The performance of the enabler is benchmarked against two different KPls:

o KPI#1: the first used KPIl is communication rate. The simulations assume packets
transmitted at a fixed rate corresponding to a spectral efficiency of 4 b/s/Hz, and the
target is to minimize the amount of erroneous transmissions together with the
transmissions used for sensing.

o KPI#2: the second KPI is the communication latency, that is, the time it takes to
successfully transmit a packet to the user (accounting for the time required for sensing,
buffering, erroneous transmissions). Target for KPI#2 is to achieve a latency no larger
than that of B#1.

3.2.6.2 Validation results
Validation results for this enabler have been described in part in [14], while further

unpublished results are also included here.

A snapshot of some of the validation results obtained for this enabler in terms of KPI#1 are
included in Figure 8. In the left-hand figure, the CDF of the normalized throughput is
represented in the right-hand figure, and the average normalized throughput is evaluated as
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a function of the user’s speed. It is worth noting that throughput is normalized with respect
to the data rate target for KPI#1. It can be observed from the CDF that the proposed PPO-
based method achieves throughput 1 about 60% of the time, indicating that this percentage
of the time the achievable rate of the user is above the target value. It is clearly seen that the
proposed method outperforms all other baselines in terms of average throughput and is the
method closest to the unachievable performance of the genie-aided version of B#3.

LO01 —- pod-Genie
— - Apd-Based 0.95
0.8 ]
('-

0.6

CDF

0.4 —8— AoD-Genie

Averaged Throughput
o
=]
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Throughput Users Average Speed [m/s]

Figure 8: Validation results of Joint Communication and Sensing for KP1#1

In terms of communication latency, while this has not strictly been evaluated, some evidence
of the use of slots for transmissions for the different methods can be observed on the left-
hand side of Figure 9, whereas in the right-hand side the causes of the erroneous
transmissions of each of the methods are analysed. It can be concluded that the PPO-based
method allocates fewer resources for sensing than 1-TDMA while getting comparable packet
drop performance, which results in lowered latency. Compared to 3/6-TDMA, the proposed
method uses more resources for sensing, but leads to significantly lower amount of packet
drops. In conclusion, the proposed reinforcement learning algorithm is capable of striking a
balance behaviour, smartly allocating sensing and communication slots to achieve a better
trade-off and overall increased data rates in comparison to the baselines.
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Figure 9: Validation results of Joint Communication and Sensing for KPI#2

3.2.7 ML-enabled Symbol Modulation

We now move on to a different type of enabler developed in CENTRIC’s WP3. In this case, an
autoencoder neural network is used as a method to automatically learn symbol modulations
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specially tailored to specific system conditions. The outcome and conditions of the validation

of this enabler are summarized in Table 12, with the details provided below.

Table 12: Validation Summary for ML-enabled Symbol Modulation

ML-enabled Symbol Modulation (InterDigital)

Validation . .
Baselines KPlIs Targets Achieved Result
approach
L than B#1
KPI#1: Bit/Symbol- ~ —owerthan >3dB gain at SER =
under nonlinear
error rate impairments 10%.
Link-level B#1: QAM Genperalization
simulations modulations KPI#2: Model Generalization to

achieved for
multiple
modulation orders

generalization
ability

8-ary and 16-ary
modulations.

3.2.7.1 Validation assumptions

In this case, the method is validated by learning modulations for radio channels that include
non-linear impairments. Link-level simulations are used to simulate the radio impairments,
train an ML model under the impaired channel, and assess the performance of the learned
symbol modulation.

The method’s performance is evaluated against a single baseline:

e B#1: as baseline, performance is compared with that of classical quadrature amplitude
modulation (QAM).

As evaluation metrics, we use the following KPls:

e KPI#1: bit and symbol error rate achieved by the method (no channel coding involved).
The target is to achieve lower values than those achieved by B#1.

o KPI#2: model generalization, in the sense of how well the model can generalize to
different number of input bits (i.e., modulation order) is qualitatively assessed.

3.2.7.2 Validation results

The results obtained with the trained autoencoder under nonlinear impairments are
presented in Figure 10, where the symbol-error rate (SER) performance of the learned
constellations for 8-ary and 16-ary modulations is depicted against the system’s signal-to-
noise ratio. The SER for the corresponding traditional modulations is also depicted.
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Figure 10: Validation Results for ML-enabled Symbol Modulation

The results show that the target for KPI#1 of improving the SER performance with respect to
traditional modulations (B#1) is achieved over a wide range of SNR, obtaining gains of around
3 dBs at a SER of 10%. It is also observed that the target for KPI#2 is as well achieved, as the
model is capable of generalizing well to, at least, two different settings of input bits,
corresponding to 8-ary and 16-ary modulations.

3.2.8 Multi-user MIMO Neural Receiver

We now present the validation results for the multi-user MIMO neural receiver developed by
NVIDIA in the context of WP3. This is one of the enablers in which the validation work has
achieved a higher level of maturity. In addition to the work done in WP3 for development of
the concept and evaluation of performance via Monte-Carlo simulations, there has also been
work on the enabler in WP2 in order to accelerate inference with GPU processing.
Furthermore, the receiver has also been evaluated in a proof-of-concept implementation
based on hardware-in-the-loop in WP5. In this report, we focus on the validation of the
concept’s performance via simulations, and the evaluation of the outcome of the acceleration.
A detailed analysis of the validation achieved through the proof-of-concept implementation is
reserved for D5.4, which will report all the proof-of-concept activities in CENTRIC.

The outcome and conditions of the validation of this enabler are summarized in Table 13, with
the details provided below.

Table 13: Validation Summary for Multi-user MIMO Neural Receiver

Multi-user MIMO Neural Receiver (NVIDIA)

Validation

Baselines KPIs Targets Achieved Result
approach
_ Link-level Bitl:receiverwith -\ o1 BlERfor  BLER close to B#2

simulations and LS-based channel . . .

. . fixed with lower <1 dB loss with
proof-of-concept estimation and computational computational respect to B#2
with hardware-in-  LMMSE MIMO cor‘; o Co:} o P

the-loop detector plextty plextty-
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B#2: receiver with
LMMSE-based KPI#2: Inference <1ms inference 1ms latency
channel estimation latency latency on NVIDIA processing 132
and K-Best MIMO A100 GPU PRBs

detector

3.2.8.1 Validation assumptions

The validation of the concept has been carried out using link-level simulations utilizing
NVIDIA’'s Sionna platform. The receiver has been evaluated in a 5G-compliant uplink
configuration, using 3GPP compliant channel models as well as ray-traced channels for specific
scenarios.

Two baselines are used for comparison:

e B#1: the first baseline consists of a 5G PUSCH MU-MIMO receiver with LS-based
channel estimation and LMMSE MIMO detector, as available in open-source
implementation in Sionna [15]. This can be considered as a state-of-art commercial
receiver for 5G.

e B#2: the second baseline is a 5G PUSCH MU-MIMO receiver with LMMSE-based
channel estimation and K-Best MIMO detector, with implementation also available in
Sionna [15]. This receiver can be considered very close to optimal, but has an infeasible
computational complexity for current base stations.

The KPIs used to assess the receiver’s performance are:

e KPI#1: as first KPI, the block error rate (BLER) performance of the receiver evaluated
at a specific computational complexity is used. The target for KPI#1 is to achieve values
close to the BLER of B#2 at a lower computational complexity.

o KPI#2: the second KPI relates to the inference latency incurred by the accelerated
version of the neural receiver. The target for KPI#2 is to achieve an inference latency
no larger than 1ms on a specific computational platform (NVIDIA A100 GPU). This
would allow running the receiver in real time.

3.2.8.2 Validation results

Starting with the validation results for KPI#1, an illustration of the neural receiver performance
for different number of active layers, Nr, is depicted in comparison to the baselines used in
Figure 11. The complexity of the neural receiver has been tuned to be lower to that of B#2. As
it can be observed, for a number of spatial layers spanning from 1 to 4, the neural receiver
performs always within 1dB of B#2, and even achieves better performance for some SNRs. In
addition, a very sizable gain (~3dB) is observed in comparison with B#1, which represents a
practically achievable baseline. Further performance results for this enabler can be found in
CENTRIC's deliverable D3.2.
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Figure 11: Validation Results of Multi-user MIMO Neural Receiver for KPI#1

Validation results for KPI#2 are presented in Figure 12, where the inference latency (blue) and
the SNR required to attain a BLER of 10% (green) are depicted versus the number of iterations
run at the neural receiver. As it can be observed, the inference latency grows linearly with he
number of iterations run at the receiver, whereas the SNR required to achieve the target BLER
decreases. This illustrates the existing tradeoff between inference latency (and computational
complexity) and receiver performance. The results show that, while the receiver performance
would be slightly degraded, it is possible to limit the number of iterations of the receiver in

order to achieve the target of real-time processing.
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Figure 12: Validation Results of Multi-user MIMO Neural Receiver for KP1#2

3.3 Benchmarking of WP4 Enablers
3.3.1 DCI Compression

The first WP4 enabler that we present is that of DNN-based downlink control channel (DCI)
compression. The objective of the enabler is to find way to perform lossless compression of
the DCI information that leads to a smaller amount of bits required to transmit the DCI
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information. The proposed lossless encoder is based on a transformer DNN architecture, and

has been presented in [16].

The outcome and conditions of the validation of this enabler are summarized in Table 14, with
the details provided below.

Table 14: Validation Summary for DCI Compression

DCI Compression (NNF)

Validation

Baselines KPIs Targets Achieved Result
approach
System-leveland ) oo Coding KPI#1: PDCCH 0.2 dB decoding .
link-level L . Up to 0.3 dB gain
. . [17] reliability gain
simulations
Deepzip [18] KPI#2: Lossless 10% improvement 18% improvement
Pzip compression ratio versus B#1 over B#1.

3.3.1.1 Validation Assumptions

The proposed compressor has been validated using Monte Carlo simulations with two
different simulation tools. On the one hand, a system-level simulator with standard-compliant
implementation of 5G NR Time Division Duplex symbol-based scheduling has been used to
collect datasets to train the designed DNN. As the second tool, a link-level simulator used to
model transmission of the Physical Downlink Control Channel (PDCCH) over additive white
Gaussian noise (AWGN) channels has been used. This second simulator is used to assess the
decoding performance of the PDCCH under the different methods of DCl compression
considered.

Two main baselines are used to evaluate the performance of the proposed enabler:

e B#1: the first baseline is to use Huffman coding [17], a classical method for lossless
compression.

e B#2: the second baseline is another Al-based method that relies on recurrent neural
networks (RNNs) and is coined Deepzip [18].

The proposed method and baselines are evaluated with respect to two KPls:

o KPI#1: the first KPI is the PDCCH reliability, measured in terms of its frame error rate
(FER). The target for this KPl is to achieve 0.2 dB SNR gain in the decoding of the PDCCH
compared to the current standard method.

o KPI#2: the second KPI is the compression ratio achieved by the proposed lossless
compression scheme, defined as the ratio between the original message bitlength and
the compressed message bitlength. The target is to improve the compression ratio by
10% compared to B#1.

3.3.1.2 Validation Results

We present now the validation results for the DCI compression enabler. Starting with KPI#1,
an illustration of the results can be seen in Figure 13, where the different methods listed in
the legend correspond to:
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PDCCH (39,100): The original PDCCH Polar encoding and decoding scheme with an
encoded length of 100 bits (current standard)
HC: PDCCH with a lossless Huffman coding compressor (B#1).
Transformer-BCE: PDCCH with a lossless transformer-based compressor trained using
binary cross-entropy (BCE) loss (proposed enabler)
Transformer-mFocal: PDCCH with a lossless transformer-based compressor trained
using a modified focal loss (proposed enabler)
RNN-DeepZIP: PDCCH with a lossless recurrent neural network (RNN)—based
compressor (B#2).
Joint Transf. & HC: PDCCH with a lossless compressor that jointly applies a
transformer-based model and Huffman coding (proposed enabler)

Horizon Europe project no. 101096379
Deliverable D5.3

The results show that a decoding gain of up to 0.3 dB can be obtained with the proposed
compression methods.

FER (Frame Error Rate)

—&—PDCCH (39, 100)
-3 | —o—HC
TransformerBCE |
—#— Transformer-mFocal |-
#— RNN-DeepZip
Joint Transf. & HC

0 1 2 3 4 5

Figure 13: Validation results of DCI Compression for KPI#1

In connection with KPI#2, the compression ratio, a snapshot of the compression levels
achieved by the proposed enabler and the baselines is depicted in Figure 14. The figures
represent the original DClI messages and their compressed versions with the different
compressors. White and light blue colour indicate bit values of 0 and 1, respectively. Dark blue
colour indicates bits that remain null after compression, that is, they represent the overhead
savings obtained with the compression methods. The outcome of this validation is that the
compression ratio obtained by the proposed transformer-based solution showcases a gain of
18% with respect to B#1, thus exceeding the original target of 10% improvement.

p—

Original DCI messages Huffman coding (B#1)
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Proposed enabler

Figure 14: Validation results of DCI Compression for KPI#2

3.3.2 Task-oriented Cognitive Wireless Scheduling: collaborative navigation

The first enabler in the are of task-oriented cognitive wireless scheduling is an Al-based
solution to enable collaborative navigation between teams of robots, a scenario pertaining to
the social manufacturing use-case of Industry 4.0 shop floor. The problem is illustrated in
Figure 15 and Figure 16. Figure 15 shows the system model for the robotic navigation problem.
In it, Two teams of 3 robots each need to reach their assigned destination as soon as possible
and execute there a task in parallel.

DEVICE TO DEVICE

COMMUNICATION LEARNED
LEARNED \ PROTOCOL AGENT-0
PR0T0C017-=,

TE

-
/
é OBSTACLES

Figure 15: System model of the problem

AGENT-3"4)

3 : DESTINATION
/ / TEAM 1

In Figure 16, the communication model of the problem is depicted. The role of the BS is to
allocate the data channel to the team of robots that has less agents at the destination working
on their task. The BS needs to ensure that the two task are executed in parallel, that is, that
there is an equal number of robots at each of the two destinations. A team of robots can only
move on the grid if they exchange their Al-emerged protocol messages. There are 6 robots
requiring access to 3 shared uplink data channels and 3 shared downlink channels.
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Figure 16: Communication model of the problem

The outcome and conditions of the validation of this enabler are summarized in Table 15, with
the details provided below.

Table 15: Validation Summary for Task-oriented Cognitive Wireless Scheduling:
collaborative navigation

Task-oriented Cognitive Wireless Scheduling: Collaborative Navigation (OUL)
Validation

Baselines KPIs Targets Achieved Result
approach
KPI#1: Parallel task
B#1: round robin executlon. As close to 1 as Values between 0.9
schedulin (evaluated with ossible and 1
Monte Carlo & Jain’s fairness index P ’
simulations [11)
B#2: optimal KPI#2: Latency to . 103.5 + 20.2 time
navigation policy destination (in As low as possible I
from [19] time-steps) P

3.3.2.1 Validation Assumptions

The validation of the enabler is based on Monte Carlo simulations on a computer
implementation of the scenario described above. At the beginning of the simulation, the 6
robots are placed randomly on the grid and they need to navigate to their assigned
destination. Each team of 3 robots has an assigned goal position. The simulation is run until
all the robots have reached the destination or is terminated after a maximum time-out
number of steps. Within a team of robots, and ideal communication channel without packet
errors and transmission delays is assumed. Each team of robots navigates on the grid to the
destination by exchanging their Al-emerged messages proposed in [19]. The base station
coordinates the team of robots via dedicated control channels. The communication channels
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are considered ideal, as the focus is on the channel access logic. Hence, no assumptions are

used on channel properties, channel estimation, or data encoding and decoding schemes.
Two baselines are used for comparison of the proposed scheme:

e B#1: the first baseline is a simple round-robin scheduling scheme for channel access.
This baseline does not consider the level of task completion of the different teams of
robots, so it is a non-goal oriented scheme.

e B#2: the second baseline is the navigation policy proposed in [19]. This method ‘s goal
is to improve the navigation time to destination of a team of robots. The baseline is
used to extract the messages given by its optimal navigation policy.

The proposed method is assessed in terms of two KPIs:

o KPI#1: the first KPI is the degree of parallel task execution, and is measured using
Janin’s fairness index [1]. The target is to reach a value as close to 1 as possible in the
index, which corresponds to an equal share of resources.

o KPI#2: the second KPI is the latency to destination, that is, the number of time-steps
that the last robot of a team needs in order to reach the goal position. The target is to
decrease it as much as possible.

3.3.2.2 Validation Results

The validation results for KPI#1 are depicted in Figure 17, where Janin’s fairness index is
plotted for the proposed enabler and for B#1 against the number of robots that have reached
the goal. It is clearly seen how the proposed method, in its two variants, produces always
fairness much closer to the goal of 1 than a round robin scheduling scheme (B#1). In the
proposed scheme, the BS monitors the number of robots at the goal from the current team
and switches the channel access as soon as a new agent has reached the goal, leading to the
increased fairness depicted in the figure.
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Jain's fairness index
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e=s== Our scheduling scheme using the ground truth
Our scheduling scheme using the STL processing
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Figure 17: Validation results of collaborative navigation for KPI#1
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The values for the latency to destination (KPI#2) are obtained from [19], by evaluating the
freely available code provided by the authors. This corresponds to a value of 103.5 + 20.2 time
steps. This shows that enabling communication between robots provides guarantees of
convergence of all the agents to their goals, which is something that cannot be guaranteed
without communication.

3.3.3 Task-oriented Cognitive Wireless Scheduling: semantic communication and control
co-design

As a second enabler in the domain of task-oriented cognitive wireless scheduling, we know
present the validation results for a method for semantic communication and control co-design
developed within WP4. The proposed method consists of a scheduling approach for multi-
device control systems that integrates self-supervised learning and split learning. The method
relies on the introduction of time-series joint embedding predictive architecture (TS-JEPA) to
model semantic control dynamics within the latent space. To enhance efficiency, a latent
space-based scheduling scheme was implemented to optimize wireless resources utilization
based on both control performance and channel condition. More details on the method can
be found in [20].

The outcome and conditions of the validation of this enabler are summarized in Table 16, with
the details provided below.

Table 16: Validation Summary for Task-oriented Cognitive Wireless Scheduling: semantic
communication and control co-design

Task-oriented Cognitive Wireless Scheduling: semantic communication and control co-

design (OUL)

Validation Baselines KPIs Targets Achieved Result
approach
B#1: Al-based
methods KPI#1: Control o
Within the target
(autoencoder and performance — In range [0.75—1]
. . range
supervised Normalized score
learning)
Link-level KPI#2:
imulati -
simulations B#2: classical Commynlcahon L . 10x faster
efficiency — Minimize while .
schedulers . R transmissions than
T et ey Communication maintaining target N P
te bits and for KPI#1
round-robin) L rate
Transmission
latency

3.3.3.1 Validation Assumptions

The validation was conducted in a simulation environment involving multiple independent
non-linear inverted cart-pole systems with different control objectives, representative of
industrial internet-of-things (lloT) use cases such as smart factories. The link-level simulation
framework accounts for the application layer (i.e., capturing frames through High frame-rate
cameras for real-time sensing), data-link layer (i.e., implementing medium-access control
(MAC) policies to prioritize robots for transmission), and physical layer (i.e., dynamically
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allocating wireless resources). The BS centralizes transmission scheduling, ensuring that robot
with poor control performance but favorable channel conditions are prioritized for
communication with the remote controllers. Moreover, while the current validation assumes
channel state information (CSIs) availability at the BS, ongoing work explores latent space-
based wireless dynamics prediction to predict future channels within the latent space [21].
Moreover, the base station is assumed to have access to the CSI of users for scheduling
purposes, the control dynamics are assumed to be unstable on their own, and each control
system operates independently but within a shared wireless network.

The evaluation of the proposed semantic communication and control co-design framework is
compared against two main categories of baselines. First, Al-based baselines that leverage Al
techniques to optimize control performance within the latent space. Second, non-Al-based
baselines are the traditional scheduling approaches to allocate wireless resources. These two
types of baselines provide a comprehensive performance comparison in balancing
communication efficiency and control performance. The selected baselines are:

e B#1: as Al baselines, an auto-encoder and a supervised learning approach are used.
e B#2: as traditional (non-Al) baselines, classical random, round-robin, and greedy
scheduling algorithms are used.

The method’s performance is characterized by using two KPls:

o KPI#1: the first KPI relates to the control performance, and the normalized score is
used to measure it. The normalized score aims to measure how closely the control
systems follow the desired objectives. The target range is [0.75-1.0], ensuring control
performance remains high while optimizing wireless resources.

o KPI#2: the second KPI characterizes the communication efficiency, by measuring the
communication bits used and their transmission latency. The target is to minimize the
bit transmission overhead while ensuring good control performance.

3.3.3.2 Validation Results

The validation results for both KPIs are depicted in Figure 18, where the left-hand figure
presents the results for KPI#2 and the right-hand figure those of KPI#1. Starting with KPI#1,
we observe that the two instances of the proposed TS-JEPA scheme (with and without
prediction) stay always above a normalized score of 0.75. The instance using prediction
displays a score that tends to the value 1 as the prediction horizon increases.
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Figure 18: Validation results of Task-oriented Cognitive Wireless Scheduling: semantic
communication and control co-design

For KPI#2, we observe that the proposed method obtains much lower communication
overhead than most of the evaluated baselines. In particular, the instance that uses prediction
exhibits a communication overhead that vanishes as the prediction horizon grows.

3.3.4 Emerging multiple-access protocols for specialized services

Another enabler developed in WP4 is that of a method for emerging multiple-access schemes
for specialized communication services. In particular, the use-case employed to validate the
method is that of an in-factory scenario made of subnetworks. These subnetworks are
installed in mobile robots, and power control of them is necessary in order to control
interference while satisfying the communication requirements.

The outcome and conditions of the validation of this enabler are summarized in Table 17, with
the details provided below.

Table 17: Validation Summary for Emerging multiple-access protocols for specialized

services
Emerging multiple-access protocols for specialized services (AAU)
Validation Baselines KPlIs Targets Achieved Result
approach
B#1: genie-aided KPI#L: ?:ger flush 0.9 median value 0.88 median value
mtonsinin. B2 andom
protocol KPI#2: signalling 50% reduction with

factory scenarios 80% reduction

B#3: interference- overhead respect to B#1
aware protocol

3.3.4.1 Validation Assumptions

The enabler is validated by means of system-level simulations of the targeted in-factory
subnetworks scenario. It is assumed that a central entity is present and can perform power
control based on signalling information received from the subnetworks. The system
parameters used for the simulations are detailed in Table 18.
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Table 18: Simulation parameters for Emerging multiple-access protocols for specialized
services
Parameters Values
Deployment area 10 m x10m
Subnetwork radius 1m
Operating frequency 6 GHz
Bandwidth 10 MHz
Path loss exponent 2.7
Maximum speed of subnetworks 3m/s
Maximum transmit power 20 dBm
Minimum transmit power 0dBm
Number of subnetworks 10
Number of devices per subnetwork 1
Distance between device and and AP 0.5m
Noise spectral density -174 dBm/Hz
Payload 64 bytes
Latency 0.001s
Threshold Spectral Efficiency (Rth) 0.05 bps/Hz
Capacity of AP buffer 100

For comparison, three non-Al baselines are implemented as well:

e B#1: as ideal baseline, a genie-aided persistent power allocation algorithm is used.

e B#2: the second baseline consists of a protocol that performs random actions.

e B#3: the third baseline is and interference-aware power control protocol.

The performance of the proposed method is characterized using two KPIs:

e KPI#1: as first KPI, the buffer flush rate, that is, the median number of successful
packets transmitted per time step, is used. The target for the KPl is to achieve a value

of 0.9.

o KPI#2: the second KPI relates to the signalling overhead incurred by the protocol,
measured in bits. The target for this is to obtain a 50% reduction with respect to B#1.

3.3.4.2 Validation Results

The validation results for KPI#1 are displayed in Figure 19, which depicts the empirical CDF of
the buffer flush rate obtained by the different methods. The median value achieved by the
proposed enabler (MAPPO MAC) is of 0.88, which slightly falls short of reaching the target of
0.9. Nonetheless, the results show a clear superiority of the proposed Al-based approach with
respect to all of the evaluated baselines (except B#1, which represents an ideal unattainable

performance).
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Figure 19: Validation results of Emerging multiple-access protocols for specialized services
for KPI#1

The results for KPI#2 are presented in Figure 20, which shows the signaling overhead incurred
by the different methods. It is observed that the proposed method (MAPPO) achieves low
overhead compared to most of the baselines. Importantly, it exhibits an 80% reduction with
respect to B#1, which exceeds the target of 50% reduction. It is important to know that this
significant overhead reduction comes at the expense of only a slight degradation in

performance with respect to B#1, as can be seen in Figure 19.

leb

Signalling Overhead

Approaches

Figure 20: Validation results of Emerging multiple-access protocols for specialized services
for KPI#1
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3.3.5 Federated Multi-Agent DRL for Radio Resource Management

Continuing within the realm of industrial communication scenarios using subnetworks, we
present now the results of a method for radio resource management based on federated
multi-agent deep reinforcement learning (DRL). Details on the method can be found in [22].

The outcome and conditions of the validation of this enabler are summarized in Table 19, with
the details provided below.

Table 19: Validation Summary for Federated Multi-Agent DRL for Radio Resource
Management

Federated Multi-Agent DRL for Radio Resource Management (AAU)

Validation Baselines KPIs Targets Achieved Result
approach
KPI#1: H 1st
B#1: Graph U.s?r 6 b/s/Hz a.t Target achieved
System-level colouring spectral efficiency percentile
imulati . : .
simutations algorithm [23] NetE8 EVEIRS 12.5 Target achieved
reward

3.3.5.1 Validation Assumptions

The method’s performance has been validated by means of system-level simulations, with
parameter settings as specified in

Table 20: Simulation parameters for Federated Multi-Agent DRL for Radio Resource

Management
Parameter Value
Total factory area 180 mx 80 m
Clutter type table Sparse
Number of subnetworks 20
Timestep 0.005 s
Number of episodes 2000
Number of steps per episode 200
Subnetwork separation distance 1m
Subnetwork radius 1m
Subnetwork velocity 3m/s
Transmit power -10 dBm
Number of frequency channels 4
Carrier frequency 6 GHz
Bandwidth per subnetwork 10 MHz
Noise figure 10dB
Shadowing decorrelation distance 10 m
Max action switch delay 10

As baseline for performance comparison, one traditional (non-Al) method has been used:

e B#1: the selected baseline is the centralized graph colouring algorithm described in
[23].
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Two KPIs are used to characterize the methods’ performance:

e KPI#1: User spectral efficiency, evaluated at low percentiles. This allows to characterize
the performance of worst-case users. The target is to obtain a rate of 6 bits/s/Hz at the
15t percentile of the spectral efficiency distribution.

o KPI#2: The second KPI is the average reward obtained in the operation of the DRL
agents. The target is to reach an average value of 12.5.

3.3.5.2 Validation Results

We showcase here a selection of the results that allows to quantify the selected KPIs. Further
analysis can be found in [22].

With respect to KPI#1, the results obtained with different instances of multi-agent DRL are
depicted in Figure 21, which depicts the cumulative density function (CDF) of the per-user
spectral efficiency achieved. It is observed that a couple of the DRL based methods achieve
the target of 6 bits/s/Hz at the targeted 1° percentile. All the proposed methods achieve much
better performance than a random scheduling algorithm, and similar performance to that of
a greedy method. However, they are outperformed by B#1, which is typically considered too
complex to be implemented in practice.

10°

101 4

CDF

;0/" Reward type: Rate
7 L ~¥ Random
102 _“ ’/,—"' - Greedy
A ~#- CGC
E ©@- C-MADDQN
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—e— C-MAPPO
pe —- D-MAPPO
—§— F-MAPPO: TA%9 =512
10-3 T T T T T
6 8 10 12 14

Per device rate [bps/Hz]

Figure 21: Validation results of Federated Multi-Agent DRL for Radio Resource
Management for KPI#1

Regarding KPI#2, results are presented in Figure 22, which depicts the reward over episodes
of the operation of the reinforcement learning agents. Results are presented separately for
the two DRL frameworks utilized: MADDQN is presented on the left-hand side, whereas
different variants of MAPPO are depicted in the right-hand side. The results show that the
MAPPO agents converge much faster to the target reward value than the MADDQN
counterparts do. The achieved rewards after convergence tend to oscillate around the target
of 12.5.
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Figure 22: Validation results of Federated Multi-Agent DRL for Radio Resource
Management for KPI#2

3.3.6 MlL-based Sub-band Selection

Another enabler that deals with radio resource management in 6G In-factory subnetwork
scenarios that has been developed in WP4 is a ML-based method for sub-band allocation
between the different subnetworks. The method relies on a deep, fully-connected neural
network architecture that is trained to maximize the number of subnetworks that fulfill certain
rate criteria. The details of the approach are extensively described in [24].

The outcome and conditions of the validation of this enabler are summarized in Table 21, with
the details provided below.

Table 21: Validation Summary for ML-based Sub-band Selection

ML-based Sub-band Selection (AAU)

Validation Baselines KPlIs Targets Achieved Result
approach
System-level B#1: SISA algorithm = KPI#1: rate- Median values of 9 ' 9 for low-rate and
simulations [25] conforming for low-rate and 3 2.6 for high-rate
subnetworks for high-rate | networks.
subnetworks
KPI#2: Training loss L=1 L=1.1

L

3.3.6.1 Validation Assumptions

The performance of the proposed allocation method has been evaluated using system-level
simulations, with parameters set as in Table 22.

Table 22: Simulation parameters for ML-based Sub-band Selection

Parameter Value
Factory area, L X L 20 mx20 m
Number of subnetworks, N 20
Number of sub-bands, K 4
Subnetwork radius, R Im
Number of devices per subnetwork, J 1
Minimum distance between APs 2m
device to AP minimum distance, d,,i, 0.8
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Shadowing standard deviation, A 7.2dB
DL clutter density, 7, clutter size, d 0.6,2
De-correlation distance, d, 5m
Transmit power, P, 0 dBm
Bandwidth, B 40 MHz
Carrier frequency, f, 10 GHz
Noise figure, NF 5dB
Low-rate subnetwork required SE, SE; " 0.4
High-rate subnetwork required SE, SE;; 8

of-the-art algorithm relying on traditional model-based processing is used as baseline:
B#1: the sequential iterative sub-band allocation (SISA) algorithm [25].
Is are used to characterize the enabler’s performance:

KPI#1: the first KPI consists of the count of subnetworks that reach their required rate,
which is coined rate-conforming subnetworks (RCS). To ensure fairness, the KPI is
evaluated separately for high- and low-rate subnetworks, with their targets being a
median value of 9 for low-rate subnetworks and a median value of 3 for high-rate ones.
KPI#2: The second KPI is is the loss value achieved by the neural network during

training. The loss function is defined as

o(SE; 1 -SEy)

Teq
SE,

L= , where o denotes the sigmoid function, SE,, denotes the rate

achieved by the nth subnetwork, and SE,:eq is its rate requirement. The target value
for the loss functionis L = 1.

Validation Results

Starting with KPI#1, the validation results for it are depicted in Figure 23, where the left-hand
figure shows results for the low-rate networks and the right-hand one depicts the high-rate
subnetworks. It can be observed that the propose DNN method performs equally to B#1 for
the low-rate case, whereas it clearly outperforms it in the high-rate count. The target of RCS
reaching 9 for the low-rate networks is achieved, but the method is slightly below the target
for high-rate ones, reaching only a value of 2.6 instead of the targeted value of 3. Nonetheless,

the pro

1

posed method is clearly better than B#1 and outperforms all other methods evaluated.

1
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(a): Low-rate subnetworks (b): High-rate subnetworks
Figure 23: Validation results of ML-based Sub-band Selection for KPI#1

With respect to KPI#2, the training convergence curve of the model is depicted in Figure 24,
which shows the value of the loss function over training epochs. The loss function achieves,
with sufficient training iterations, a value slightly below 1.1, which is close but not reaching
the target value of 1.

Training loss
= = Validation loss
- ++=+++* Binarization error

Value of loss function
Value of binarization error

0 50 100 150 200
Epoch

Figure 24: Validation results of ML-based Sub-band Selection for KPI#2

3.3.7 Joint Sub-band Allocation and Power Control for Outdated CSI Scenarios

As a last enabler developed for the problem of radio resource allocation in In-factory
subnetworks, we present now the results of an extension of the previous enabler which, in
addition to performing sub-band allocation, also carries out power control. In addition, the
method operates with outdated CSI.

The outcome and conditions of the validation of this enabler are summarized in Table 23, with
the details provided below.

Table 23: Validation Summary for Joint Sub-band Allocation and Power Control for
Outdated CSI Scenarios

Joint Sub-band Allocation and Power Control for Outdated CSI Scenarios (AAU)
Validation

Baselines KPIs Targets Achieved Result
approach
average SE = average SE =
system-level B#1: SISA [25] KPI#l.: ?pectral 8.5@median 8.7@median
simulations combined with efficiency per-user SE =5.8 per-user SE = 5.8
WMMSE [26] @10-3 @10_3
KPI#2: Training loss 103 0.6-103

3.3.7.1 Validation Assumptions

The proposed method is evaluated via system-level simulations, with parameters detailed in

Table 24: Simulation parameters for Joint Sub-band Allocation and Power Control for
Outdated CSI Scenarios

Parameter Value
Factory area, L X L 20 mx20 m
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Number of subnetworks, N 10
Number of sub-bands, K 3
Subnetwork radius, R 1m
Number of devices per subnetwork, / 1
Minimum distance between APs 2m
device to AP minimum distance, d,,i, 0.8
Shadowing standard deviation, A 4dB
DL clutter density, 7, clutter size, d 07,1
De-correlation distance, d, 5m
Maximum transmit power, P,, 0 dBm
Subband Bandwidth, B 40 MHz
Carrier frequency, f, 10 GHz
Noise figure, NF 5dB
Sounding reference signal period, At 100 ms
CSl buffer length, T 5
Prediction length (delay) T 4

\“l.
CENTRIC

For comparison of the method’s performance, a baseline has been defined as follows:

As evaluation metrics, two KPls are used:

3.3.7.2 Validation Results

The validation results for KPI#1, that is, the obtained CDF of the SE, is depicted in Figure 25.
Subfigures (a) and (b) show the CDFs of the average and per-user SEs respectively under
different levels of outdating of the CSI for the proposed enabler and B#1. It can be observed
that the proposed method (DNN) is quite more robust to CSI outdating than the baseline.
Subfigures (c) and (d) evaluate different predictors that can be used in combination with the
proposed method. Fron these results, we can see that the average SE has a median value of
8.7 b/s/Hz, slightly above target, whereas the per-user SE CDF has a value of 5.8 at 103, which
fall slightly short from the target.
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B#1: the baseline consists of the combination of two non-Al algorithms, one for sub-
band allocation and one for power control. Sub-band allocation is done by the already
mentioned SISA algorithm [25], whereas power allocation is carried out using the
weighted sum mean-squre error minimization (WMMSE) method [26].

KPHI#1: as first KPI, the spectral efficiency (SE) achieved by the method is evaluated. In
particular, two statistics of the SE are in focus: the median of the average SE, with a
target value of 8.5 b/s/Hz, and the CDF value at 103 of the per-user SEs, with a target
of 5.8 b/s/Hz.
KPI#2: the second KPI used is the training loss achieved during the training process,
where the loss function used to train the method is the mean squared error (MSE).
The target for KPI#2 is a value of 103,
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Figure 25: Validation results of Joint Sub-band Allocation and Power Control for Outdated
CSI Scenarios for KPI#1

To validate KPI#2, the training dynamics of the proposed DNNs are represented in Figure 26.
Two different DNN architectures are evaluated: a plain LSTM network, and an LSTM network
with dual attention. Of these, the network with attention achieves the lower loss, exceeding

the target value of 103 and reaching 0.6 - 1073,
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Figure 26: Validation results of Joint Sub-band Allocation and Power Control for Outdated
CSl Scenarios for KPI#2

3.3.8 Learning-based HARQ

Moving on to a different topic, we now present the validation results for a learning-based
scheme developed to predict the result of the decoding process of a packet, hence being able
to request early retransmissions before the channel decoding has finalized.

The outcome and conditions of the validation of this enabler are summarized in Table 25, with
the details provided below.

Table 25: Validation Summary for Learning-based HARQ

Learning-based HARQ (InterDigital)

Validation . .
Baselines KPIs Targets Achieved Result
approach

KPI1#1: 50% decrease Achieved when
B#1: Legacy HARQ Retransmission versus B#1 and prediction accuracy

Mathematical latency B#2. larger than 0.8

lysi : i

analysis B#2: Proactive KPI#2. . o Achle.ved when
HARQ Retransmission 0.2 retransmissions = prediction accuracy

overhead larger than 0.85

3.3.8.1 Validation Assumptions

The method is validated by using mathematical analysis. For the analysis, 5G NR numerology
and frame structure are assumed, with a subcarrier spacing of 60 KHz (i.e., u = 3). In addition,
it is assumed that the packet-error rate of initial transmissions is 10%.

As baselines, two methods detailed in 3GPP standard are utilized:

e B#1: as first baseline, the legacy HARQ process in [27] is used.
e B#2: the second baseline is the proactive HARQ method in [27].

The enabler is evaluated using two KPIs:
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o KPI#1: the first KPl is the retransmission latency in round-trip time (RTT), measured in
slots. The target is to reach at least 50% decrease with respect to the baselines.
o KPI#2: the second KPI used is the retransmission overhead, measured as the average
number of retransmissions per original packet. The target for KPI#2 is to reach an
average number of retransmissions of 0.2 for high prediction accuracies.

3.3.8.2 Validation Results

The validation results of the method are presented in Figure 27, with the left-hand figure
relating to KPI#1 and the right-hand figure dealing with KPI#2. Starting with KPI#1, we see that
the proposed method (eHARQ) always reduces latency in comparison with respect to B#1 and
B#2. The reduction amounts to 55% and 50% respectively for a prediction accuracy of 0.8.

For KPI#2, we see that the average number of retransmissions ranges from around 0.5 to 0.1
as the prediction accuracy increases towards perfect prediction. The target value is reached
whenever the prediction accuracy is, at least, 0.85.

Average packet error rate = 0.1 and p=3 Average packet error rate = 0.1 and ;=3

Proactive HARQ
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Figure 27: Validation results for Learning-based HARQ

3.3.9 Probabilistic Time Series Conformal Risk Prediction

This enabler uses probabilistic time-series conformal risk prediction techniques tested under
channel prediction tasks, applied to the problems of power control under interference
constraints and energy-efficiency hybrid automatic repeat request with incremental
redundancy under decoding constraints. The method has been documented and analysed in
[28].

The outcome and conditions of the validation of this enabler are summarized in Table 26, with
the details provided below.

Table 26: Validation Summary for Probabilistic Time Series Conformal Risk Prediction

Probabilistic Time Series Conformal Risk Prediction (KCL)

Validation . .
Baselines KPIs Targets Achieved Result
approach
B#1: Time-Seri
Link-level #1: Time-Serie KPI#1: Prediction 10% improvement Up to 25%
. . Conformal - . .
simulations efficiency against B#1 improvement

Prediction [29]
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B#2: Model- KPI#2: Del
redictivecztoitrol decodii o 25 1, A
2 . . .g 10% improvement 25%, respectively,
based on Time- probability,
. over B#2 for each of the
Serie Conformal throughput, and metrics in KPI#2
Prediction [30] energy efficiency '

3.3.9.1 Validation Assumptions

Validation is performed through simulations of propagation conditions in Marienhof Square,
Munich, using the Sionna Ray-Tracing software [31]. The system is assumed to comprise a
fixed single-antenna transmitter, multiple moving receivers with pre-defined mobility patterns
and random blockages. Communication occurs at a center frequency of 2.14 GHz with a
bandwidth of 120 kHz.

Two Al-based baselines are used to benchmark the method’s performance:

e B#1: Time-Serie Conformal Prediction, a method proposed in [29]. This baseline is used
to validate the prediction accuracy of the method.

e B#2: Model-predictive control based on Time-Serie Conformal Prediction, as proposed
in [30]. This baseline is used to benchmark the performance of the control tasks based
on the prediction method.

As evaluation metrics, two KPls are considered:

e KPI#1: the first KPI is the prediction efficiency, measured using the prediction set size.
The target for this KPl is to improve 10% over B#1.

o KPI#2: the second KPlI is, in fact, a set of KPIs that should fulfil a joint target. The KPIs
involved are: delay, decoding probability, throughput, and energy efficiency. The target
is to improve (decrease for the first one, increase for all the rest) each of them 10%
with respect to B#2.

3.3.9.2 Validation Results

The validation results for KPI#1 are represented in Figure 28. There, the proposed schemes,
PTS-CRC and E-PTS-CRC, are benchmarked against B#1 for the task of channel prediction. All
methods return prediction regions that cover the true channel evolution with a probability
larger than 1-a. However, the proposed methods returns prediction sets that are in average
more efficient (smaller). Across various miscoverage requirements «, the proposed method
PTS-CRC reduces the inefficiency up to 25% while ensuring the target miscoverage rate.
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Figure 28: Validation results of Probabilistic Time Series Conformal Risk Prediction for

KPI#1

The results for KPI#2 are showcased in Figure 29. The HARQ-IR schemes are tested based on
closed-loop model predictive control (MPC). The MPC is solved using predictions from the
baseline and the proposed method. The performance metrics of the HARQ-IR algorithm
obtained by solving the MPC problem using TS-CP (B#1) and the proposed scheme, PTS-CRC,
are depicted. The parameter B determines the target rate of the HARQ-IR scheme, where a
larger B corresponds to a higher target rate. We observe a significant increase in the energy
efficiency of the HARQ-IR protocol when the MPC algorithm uses predictions from the
proposed model. Specifically, we achieve up to a 1-slot delay reduction, a 15% increase in
decoding probability, a 20% throughput gain, and a 25% improvement in energy efficiency.
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Figure 29: Validation results of Probabilistic Time Series Conformal Risk Prediction for

KPI#2

3.3.10 EMF Reduction via Al-enabled Cell-free Networking

To finalize the presentation of validation results, we now treat the case of the enabler for
electromagnetic field (EMF) exposure reduction by exploitation of the cell-free paradigm.
Specifically, a method called Cluster-then-Match (CtM), an efficient algorithm making joint

decisions about user assignment and power levels of access points, is evaluated. The method
has been described in detail in [32].
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The outcome and conditions of the validation of this enabler are summarized in Table 27, with

the details provided below.

Table 27: Validation Summary for EMF Reduction via Al-enabled Cell-free Networking

EMF Reduction via Al-enabled Cell-free Networking (CNR)

Validation . .
Baselines KPlIs Targets Achieved Result
approach
Orders of
System-level ) KPI#1: whole body Not exceed 0.08 .
simulations BH#1: Max Rate SAR (SARwb) W/kg magn[ct:r:eEtbelow

3.3.10.1 Validation Assumptions

The EMF exposure was assessed by estimating the specific absorption rate (SAR). More
specifically, SAR was evaluated over the whole body, (SARwb), which is the power of the EMF
absorbed over the entire body mass, by making use of computational approaches applied on
different human models. SAR was chosen since, for high frequencies environments, it is listed
as one of the main basic restrictions that are the actual exposure limits in the guidelines. Basic
restrictions, indeed, are based on verified health effects and provided as internal physical
guantities (as SAR in case of high frequencies). Moreover, since SAR is related to the body
mass, it allows to account for the anatomical variability of human bodies.

The performance of the proposed cell-free networking method was validated in indoors
factory scenarios as standardized in 3GPP TR 38.901, which includes non-human network
users and non-user humans. In this context, high quality decisions are needed about (i) which
access point to use when serving an end user and (ii) how to manage access points, e.g., how
to set their power levels. Following the human-centric networking paradigm, such decisions
account not only for the performance of the network, but also for the level of electromagnetic
field exposure to which human bodies incur and energy consumption.

One baseline is defined to validate the method:

e B#1: the selected baseline consists of a traditional (non-Al) optimization method
seeking to maximize the sum-rate of the system.

A single KPl is used to validate the enabler:

o KPI#1: as KPI, the specific absoroption rate (SAR) is employed. The target for it is the
value set in the guidelines for the ICNIRP, which corresponds to a SARwb of 0.08 W/kg
for general public.

3.3.10.2 Validation Results

The validation results for the proposed CtM method are depicted in Figure 30 and Figure 31.
It is observed in Figure 30 that the distribution of SARwb obtained by CtM is significantly lower
than that of B#1 and several orders of magnitude below the target (ICNIRP limit). In Figure 31,
The black marker on the color bar corresponds to the ICNIRP limit. Square and triangle
markers correspond (resp.) to humans associated with the Duke and Ella models. Red stars
represent access points.
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As conclusion of these results, we remark that in all the conditions tested and for all the
human model considered, SARwb levels resulted significantly below the limit values
recommended (i.e. the target one), with at least one order of magnitude of difference.
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Figure 30: CtM and the MaxRate benchmark: SARwb values

1 2

5 1
spacific absorption rate, whola body (AR [mWkg]

b — b b . — . e
v ~ ~ L} v ~ v L]
"= u g Ty v v "a L g Ty v v
v v ¥ M v L v Vyv
AN ] vy v ¥ % L] vy v
v v "o gV Tmm - v v v v "« v Sxm - Ty '
1 v w o v "y, Y gV . v 4 vy w o v LI vV oyv - Yy
() g Y v v v AL : v v v e
v v v v
x v v T ow v ", ¥ K v v Y ow v ., k|
v v'a o vy ¥ v \& u "'v v ". v v v"a 4 vy Y v v = "v v '- v
7 v v v LA  { v u Y - r" v v Vv LA | v uUO .
v v v y Vv L] _ v v v y Vv | y v
Y v maV v v v B [ ] v Y vy m V¥ v v v B vy B v
v vy v L) A A X v By v m AL
—— S e —— e
r'] A
20 50 80 1 2 50 80

5
specific absorption rate, whole body (SARwy) [mW/kg]

Figure 31: SARwb experienced by different humans under the MaxRate (left) and CtM
(right) strategies.
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4 Conclusions

This deliverable has presented the validation results of the enablers developed in CENTRIC
WPs 2, 3 and 4. We have restricted the presentation to include only validation by simulation
results and theoretical analysis, as validation via proof-of-concept implementation will be
reported in D5.4, due end of April 2025.

Overall, 20 Al-based technological enablers have been validated, comprising the evaluation of
a total of 37 KPIs. When evaluating the assessment of the KPlIs, we observe a large proportion
of enablers that have achieved the set targets. While the validation of the enablers has been
done in isolation of each other, and integration of multiple components is required in order
to faithfully assess the potential of Al to the air interface of 6G, these results constitute an
encouraging prospect for the disruptive capabilities of Al techniques. We hope that follow-up
projects in the upcoming phases of SNS-JU, with a higher target in terms of TRL, will be able
to overtake the task of integrating some of the developed enablers in a complete prototype
of 6G systems.

We conclude by remarking that, while extensive, the list of enablers included in this
deliverable is not exhaustive of all the work done in the project. There are still several months
to go until the conclusion of CENTRIC, and we direct the attention of the interested reader
towards the publication of final deliverables of each of the WPs in the project, where further
techniques that were not ready at the point of publication of this deliverable will be included.
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