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ABSTRACT 

One of the main objectives of WP2 is to develop energy-efficient hardware 

platforms for AI-native transceivers, with a focus on enabling low-power, high-

performance signal processing at the wireless edge. This deliverable presents 

the outcomes of hardware architecture investigations conducted in Tasks 
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T2.1.2, T2.1.3, T2.2.3, and T2.2.4, centered on a hybrid analog-digital 

neuromorphic computing paradigm. 

To address the energy bottlenecks in neural inference, particularly for sequence 

modeling tasks such as adaptive symbol detection, we propose a mixed-signal 

architecture that combines analog in-memory computing for feed-forward 

layers with digital stochastic circuits for attention mechanisms. This architecture 

supports real-time processing of temporally encoded spike signals and reduces 

memory access overhead by co-locating computation and storage. In addition, 

hardware-aware training and drift compensation techniques are implemented 

to mitigate the impact of device nonidealities. 

Our design is evaluated on a spiking neural receiver use case. Experiments 

demonstrate significant improvements in computational and energy efficiency 

compared to conventional digital implementations, achieving up to 14.5× 

energy reduction and over 7× speed-up, while maintaining comparable 

detection accuracy. These results validate the feasibility of neuromorphic 

mixed-signal hardware for future 6G transceiver platforms and highlight the 

importance of hardware-software co-design in energy-constrained AI systems. 
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Executive summary  

This document reports the outcomes of the mixed analog-digital hardware architecture 

research conducted in WP2 of the CENTRIC project. The objective is to enable energy-efficient 

neuromorphic inference for AI-native transceivers in future 6G networks. The work combines 

emerging memory technologies with neuromorphic computing principles to support 

adaptive, low-power signal processing. 

The deliverable brings together the results of four interrelated subtasks: 

• T2.1.2 – Mixed Analog-Digital In-Memory Architecture: This task established a high-level 

architectural framework for in-memory computing using memristive devices. The design 

incorporates crossbar-based cores to accelerate multiply-accumulate operations, along 

with supporting peripheral circuits, analog conductance sensing, and ADCs to ensure 

computation precision and robustness. 

• T2.1.3 – Neuromorphic Computing Architecture: Building upon the T2.1.2 architecture, 

this subtask reconfigured the system to support spike-based computation. Event-driven 

readout circuits and inter-core spike communication were developed to implement spiking 

neuron models such as leaky integrate-and-fire and probabilistic spiking, using sub-

threshold CMOS and stochastic PCM behavior. 

• T2.2.3 – Optimization for In-Memory Computing: This subtask focused on mapping 

software-trained neural networks onto the analog hardware. It evaluated the impact of 

nonidealities such as programming stochasticity, conductance drift, and read noise, and 

proposed design refinements to improve throughput, energy efficiency, and accuracy 

under realistic operating conditions. 

• T2.2.4 – Optimization for Neuromorphic In-Memory Computing: This task assessed the 

deployment of spiking neural networks on the neuromorphic hardware developed in 

T2.1.3. Performance was benchmarked in terms of latency, energy consumption, and 

throughput, with comparisons to general-purpose platform via emulation environments. 

Together, these efforts resulted in a mixed-signal neuromorphic hardware platform that fuses 

analog in-memory computing with digital spiking logic. The implemented demonstrator 

supports in-context learning for adaptive symbol detection and achieves significant energy 

efficiency gains, which demonstrates potential as a foundational architecture for next-

generation 6G transceivers. 
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1 Introduction 

The CENTRIC project is dedicated to developing AI-native and energy-efficient technologies 

tailored for 6G wireless systems. A critical element in this vision is the innovation of 

transceiver architectures that can perform fast, adaptive, and low-power signal processing 

directly at the wireless edge. Conventional digital transceiver designs struggle to meet these 

stringent demands due to their inherently high energy consumption and rigid computational 

frameworks. Neuromorphic computing, inspired by the brain’s event-driven and parallel 

processing characteristics, emerges as a promising alternative. It is ideally suited to address 

the sparse, intermittent, and bursty nature of wireless communication signals. 

This deliverable thoroughly explores how neuromorphic computing principles can be 

effectively adapted and integrated into wireless transceiver hardware. Specifically, we focus 

on the implementation of key neuromorphic functionalities—spiking neural networks 

(SNNs)—using hybrid analog-digital hardware platforms. We leverage analog in-memory 

computing (AIMC) to handle feedforward neural operations efficiently and implement 

stochastic attention mechanisms for efficient sequential processing. Furthermore, we 

develop specialized training and calibration methodologies to manage and mitigate 

imperfections inherent in analog hardware. These methods ensure precise, robust, and 

reliable inference for complex symbol detection tasks. 

1.1 Neuromorphic Computing for Adaptive Neural Receivers  

The increasing deployment of wireless receivers at the network edge introduces severe 

constraints on energy availability, latency, and adaptability. Traditional digital signal 

processing pipelines often operate in fixed stages—training, channel estimation, and symbol 

detection—each consuming power and introducing latency. In contrast, neuromorphic 

computing offers a biologically inspired alternative that processes signals in an event-driven 

and energy-efficient fashion using SNNs [1]. 

In this deliverable, we extend the neuromorphic design to support in-context learning (ICL), 

where a receiver learns to infer new symbols by recognizing patterns within pilot-reference 

sequences, without needing an explicit training or channel estimation phase [2] [3]. This 

formulation makes the receiver highly adaptive to dynamically varying channel conditions, 

enabling fast response to new users or interference scenarios with minimal pilot overhead. 

Aligned with Subtask T2.1.3, we implement a spiking neural receiver that encodes wireless 

signals as temporal spike sequences and processes them through a Transformer-based 

architecture optimized for ICL [2]. The model exploits sparsity and sequence structure, 

enabling the system to learn channel behavior implicitly from a few examples. Combined with 

neuromorphic execution, this approach lays the groundwork for ultra-low-power, latency-

efficient 6G receiver hardware. 

1.2 Hybrid Analog-Digital Hardware Acceleration for Spiking Transformers 

Transformer architectures offer powerful capabilities for sequence modeling and ICL. 

However, their reliance on dense matrix multiplications and nonlinear attention 
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computations makes them inherently energy-intensive when deployed on conventional 

digital hardware. AIMC addresses part of this challenge by executing matrix-vector 

multiplications (MVMs) directly within memory arrays, thereby reducing data movement 

overhead and associated power consumption [4]. 

However, AIMC is not well suited for implementing attention mechanisms due to their 

dynamic and nonlinear nature. To overcome the limitation, we propose a hybrid spiking 

Transformer architecture in which AIMC cores handle the feedforward path, and a 

complementary digital subsystem performs attention using spike-based stochastic logic. 

We design phase-change memory (PCM)-based AIMC cores to support multi-bit MVM 

operations with reduced energy overhead, as addressed in Task T2.1.2. To overcome the 

inefficiency of AIMC in nonlinear attention, we develop a spike-based stochastic attention 

mechanism that operates on Bernoulli-encoded inputs using simple logic gates [5]. This 

design, aligned with the objectives of Tasks T2.1.3 and T2.2.4, avoids multipliers and softmax 

units entirely. In parallel, we introduce training and calibration procedures under Task T2.2.3 

to ensure robustness against analog nonidealities such as noise, drift, and device mismatch. 

The resulting architecture supports event-driven inference with low energy consumption and 

hardware reliability across dynamic communication scenarios. 

1.3 Spiking Neural Receiver: Training, Hardware Adaptation, and 

Demonstration 

The integrated training, inference, and evaluation of the spiking neural receiver are 

presented. The system deploys the neuromorphic algorithmic design described in Section 1.1 

on the hybrid hardware acceleration platform introduced in Section 1.2.  

To ensure robust performance under analog nonidealities, we apply hardware-aware training 

(HWAT) strategies that incorporate quantization effects, analog noise, and conductance drift 

into the optimization process [6]. These techniques yield models that remain resilient to the 

imperfections of AIMC and stochastic logic-based attention. Complementary calibration 

procedures, such as global drift compensation, further enhance long-term inference stability. 

The system-level evaluation employs a suite of tools—Sionna for wireless signal modeling, 

SpikingJelly for SNN training, IBM AIHWKit for analog inference simulation, and 

DNN+NeuroSim V1.4 (NeuroSim) for energy and area estimation [7] [8] [9]. The final 

hardware-simulated receiver achieves low-latency symbol detection with competitive 

accuracy and substantial energy efficiency, demonstrating the viability of spiking neuro 

receivers for deployment in edge communication systems. 
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2 Neuromorphic Computing for Adaptive Neural Receivers 

(This section integrates contributions from T2.1.3 and lays conceptual groundwork for T2.2.4.) 

The growing demand for intelligent edge devices in wireless networks—especially in the 

context of 6G—places strict requirements on latency, power consumption, and adaptability. 

These demands pose a significant challenge to conventional ANNs, which operate under the 

assumption of continuous, synchronous data flow and dense computation. Such architectures 

are ill-suited for the inherently sparse, intermittent, and burst-driven nature of wireless 

signals observed in real-world communication systems. 

Neuromorphic computing, inspired by the information processing mechanisms of biological 

brains, offers a promising alternative [1]. By leveraging SNNs, which operate via discrete, 

event-driven spikes instead of continuous activations, neuromorphic systems can respond to 

salient input features while remaining inactive otherwise [10]. This design principle leads to 

highly efficient computation, both in terms of energy and latency, and is particularly well-

aligned with the bursty traffic and sporadic inference needs at the wireless edge. 

2.1 Spiking Neural Networks: Core Principles 

In contrast to ANNs, which propagate continuous-valued activations through each layer, SNNs 

communicate using binary spike signals that occur in time. At the core of SNNs are spiking 

neurons, most commonly implemented as leaky integrate-and-fire (LIF) neurons. The 

dynamics of an LIF neuron can be described mathematically by the following equation: 

V(t) = βV(t − 1) + I(t),   if 𝑉(t) ≥ Vthreshold,  then 𝑉(𝑡) = 1and reset 𝑉(𝑡) = 0 

Here,𝑉(t) represents the neuron's membrane potential at time 𝑡, 𝛽 ∈ [0,1) is a decay factor 

(leak), 𝐼(t) is the input signal at time 𝑡, Vthreshold  is the firing threshold, and 𝑂(t) is the output 

spike at time 𝑡. 

 

Figure 1 Comparison between artificial neuron and leaky integrate-and-fire spiking neuron. 

2.2 Bernoulli Spike Encoding of Wireless Signals 

To process real-valued wireless input signals with SNNs, the signals must be first converted 

into temporal spike sequences. A common method for doing this is Bernoulli spike encoding, 

which translates each scalar value into a binary sequence distributed over multiple time steps. 

Given a normalized scalar input 𝑥 ∈ [0,1] , the Bernoulli encoding generates a sequence 

{𝑥𝑡}𝑡=1
𝑇  such that: 
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𝑥𝑡 ∼ 𝐵𝑒𝑟𝑛(𝑥), 𝑡 = 1,2, … , 𝑇 

That is, each element 𝑥𝑡 ∈ {0,1} independently takes the value 1 with probability 𝑥, and 0 

otherwise. Over time, the expected sum of the spike sequence approximates the original 

analog value, while maintaining a binary format suitable for SNN processing [11]. 

This encoding is particularly suited for wireless signals after quantization and normalization. 

Complex-valued baseband signals can be decomposed into their real and imaginary parts, 

each of which is normalized to the [0,1] range before encoding. The result is a temporally 

sparse, spike-based representation that preserves signal fidelity while enabling event-driven 

processing. 

2.3 In-Context Learning with Spiking Neural Networks for Wireless Signal 

Processing 

Modern wireless environments are highly dynamic—characterized by unpredictable channel 

fading, interference, and user mobility. Traditional receivers address this variability through 

a three-phase pipeline: explicit channel estimation, followed by equalization, and finally 

symbol detection [12]. While effective, this pipeline introduces overhead from pilot 

transmission, inference latency, and the need for model re-training or re-estimation when 

channel conditions change. 

An emerging alternative to this paradigm is ICL, a property initially observed in large 

transformer models [13] [14] [15]. ICL enables a model to implicitly learn a task by observing 

a small number of input-output examples—without gradient-based weight updates. When 

applied to wireless communications, this concept allows a neural receiver to adapt to channel 

variations on the fly by leveraging pilot symbols as contextual examples, without requiring 

explicit channel estimation or architectural reconfiguration [3]. 

2.3.1 ICL Formulation for Symbol Detection 

In the context of symbol detection over a MIMO link, the task is to infer a transmitted symbol 

vector 𝑠  from its noisy received version 𝑦 , without access to the channel matrix 𝐻 . The 

receiver is instead given a context of pilot pairs: 

𝒞 = {(𝑦1, 𝑠1), (𝑦2, 𝑠2), … , (𝑦𝑁 , 𝑠𝑁)} 

Each pair in 𝒞 is drawn from the same unknown channel and noise distribution as the test 

input 𝑦. The goal is to infer the corresponding symbol vector 𝑠 purely by reasoning over the 

pilot examples and the new input: 

(𝒞, 𝑦) ↦ 𝑠̂ 

This direct context-to-prediction mapping avoids channel inversion or statistical estimation 

and is naturally suited to neural architectures designed for sequence processing. 
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Figure 2 Illustration of in-context learning for MIMO symbol detection. 

2.3.2 Implementing ICL with Spiking Transformers 

Transformer-based architectures are particularly effective at ICL because of their self-

attention mechanism, which allows the model to compare and align the query input with 

relevant context examples [16]. In an SNN framework, this mechanism must be adapted to 

operate with discrete-time spike sequences rather than continuous values [17]. 

Figure 2 shows how to apply ICL in a spiking setup, we first represent both the context set 

𝒞 = {(𝑦𝑖, 𝑠𝑖)}𝑖=1
𝑁  and the query input 𝑦 as spike sequences. The received signal vectors 𝑦𝑖 , 𝑦 ∈

𝐶𝑁𝑟   are separated into their real and imaginary parts and normalized within the quantizer 

dynamic range [𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥]ucing real-valued vectors 𝑦𝑖
nr, 𝑦nr ∈ [0,1]2𝑁𝑟  . Similarly, the target 

symbol vectors 𝑠𝑖 ∈ 𝒮𝒩𝓉  (e.g., QPSK symbols) are converted into one-hot encodings and 

normalized to fall within the unit interval. 

Each normalized input 𝑥 ∈ [0,1]𝑑 is converted into a binary spike sequence {𝑥𝑡}𝑡=1
𝑇 , where 

each spike vector 𝑥𝑡 ∈ {0,1}𝑑 is generated via Bernoulli encoding as 

𝑥𝑗
𝑡 ∼ Bern(𝑥𝑗),  for 𝑗 = 1, … , 𝑑,  𝑡 = 1, … , 𝑇. 

This stochastic encoding preserves the expected value of the original input while enabling 

efficient logical computation over spikes. 

At each time step 𝑡 , this sequence is passed through a spiking token embedding layer 

implemented via a LIF neuron model with trainable embedding matrix 𝑊𝑒 ∈ 𝑅𝐷𝑒×𝑑, producing 

𝐸0
𝑡 = LIF𝑡(𝑊𝑒𝒳𝓉) ∈ {0,1}𝐷𝑒×(2𝑁+1). 

The embedded spike tokens are then processed by a stack of 𝐿 spiking transformer decoder 

layers. Each layer contains: 

• A stochastic self-attention (SSA) module that computes attention weights between tokens 

via spike-wise logic. 

• A feedforward LIF network that applies temporal integration and nonlinearity. 
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Figure 3 Top: A conventional implementation of an attention block based on real-valued multiply-and-
accumulate operations within an ANN architecture. Bottom: The proposed SNN-based attention block with 

spiking inputs, outputs, and stochastic computations. Multiplication operations are replaced with logical AND (

∧) operations on spikes. Further hardware efficiency is achieved by the replacement of scaling and softmax 

blocks with a Bernoulli rate encoder. 

The attention mechanism replaces standard dot-product attention with spike-wise AND 

operations and population counting. For each attention head ℎ, queries, keys, and values are 

computed as: 

𝑄ℎ
𝑡 = LIF𝑡(𝑊𝑄𝐸𝑙−1

𝑡 ),  𝐾ℎ
𝑡 = LIF𝑡(𝑊𝐾𝐸𝑙−1

𝑡 ),  𝑉ℎ
𝑡 = LIF𝑡(𝑊𝑉𝐸𝑙−1

𝑡 ). 

Different from conventional ANN-based attention mechanism which relies on heavy full-

precision multiplications, we propose an efficient way to perform attention mechanism in 

spiking domain leveraging the binary nature of 𝑄ℎ
𝑡 , 𝐾ℎ

𝑡  and 𝑉ℎ
𝑡 , as shown in Figure 3. The 

attention logits 𝐴̃𝑚,𝑚′
𝑡  between query token 𝑚  and key token 𝑚′  are computed by 

accumulating the logic AND (∧) operation results as 

𝐴̃𝑚,𝑚′
𝑡 = ∑ 𝑄𝑗,𝑚

𝑡

𝐷𝐾

𝑗=1

∧ 𝐾𝑗,𝑚′
𝑡 , 

These logits are normalized and sampled as binary attention weights as 

𝐴𝑚,𝑚′
𝑡 ∼ Bern (

1

𝐷𝐾
𝐴̃𝑚,𝑚′

𝑡 ). 

The attention outputs are then computed using a second set of AND operations between the 

attention weights and the value tokens as 

𝐹̃𝑗,𝑚
𝑡 = ∑ 𝐴𝑚,𝑚′

𝑡

𝑀

𝑚′=1

∧ 𝑉𝑗,𝑚′
𝑡 ,  𝐹𝑗,𝑚

𝑡 ∼ Bern (
1

𝑀
𝐹̃𝑗,𝑚

𝑡 ). 

The resulting values 𝐹𝑡 are concatenated across heads and passed to a feedforward LIF block 

to complete the layer. This process is repeated across all layers, preserving spike-based 

temporal dynamics. 
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Figure 4: Block diagram of the proposed spiking transformer for ICL-based MIMO symbol detection. 

Finally, at each time step, the final decoder output is projected via a linear matrix 𝑊𝑂 ∈

𝑅𝐾𝑁𝑡×𝐷𝑒  , producing logits 𝑜2𝑁+1
𝑡  for the query token. The output logits are temporally 

averaged over all 𝑇 steps: 

𝑠̂ =
1

𝑇
∑ 𝑊𝑂𝐸𝐿

𝑡[: ,2𝑁 + 1]

𝑇

𝑡=1

, 

and the final predicted symbol is obtained as the index of the maximum value in 𝑠̂. 

This results in an event-driven ICL system that adaptively maps pilot examples and query 

observations to symbol predictions with minimal computational overhead, as shown in Figure 

4. Unlike conventional approaches that rely on weight updates, explicit channel estimation, 

or iterative optimization, this method performs inference entirely through fixed, pre-trained 

network parameters and feedforward computation over spike-encoded inputs. The temporal 

structure of the spike representation acts as an implicit memory mechanism, allowing the 

system to dynamically adapt to new channel conditions simply by observing a small number 

of context examples. 

2.4 Training the Spiking ICL Network 

To enable symbol detection via ICL, the spiking transformer is trained on a large set of 

synthetic wireless communication tasks, each characterized by a unique channel realization. 

The training objective is to learn a universal mapping that can generalize to unseen channels 

by leveraging pilot-context information, without requiring explicit channel estimation or 

weight updates at test time. 

Each training task corresponds to a randomly sampled channel 𝐻 ∈ 𝐶𝑁𝑟×𝑁𝑡  and noise 

variance σ2. For each task, a set of pilot input–output pairs {(𝑦𝑖, 𝑠𝑖)}𝑖=1
𝑁  and a query input 𝑦𝑞 

with unknown symbol 𝑠𝑞 are generated using the canonical quantized MIMO model: 

𝑦𝑖 = 𝑄𝑏(𝐻𝑠𝑖 + 𝑛𝑖),  𝑛𝑖 ∼ 𝒞𝒩(0, 𝜎2𝐼), 
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with 𝑠𝑖 ∈ 𝒮𝒩𝓉  drawn from a modulation constellation (e.g., QPSK, 16-QAM) and 𝑄𝑏(∙) is a 

quantizer with quantization resolution 𝑏 . Each complex vector is separated into real and 

imaginary parts and normalized to lie in [0,1], then encoded into temporal binary sequences 

using Bernoulli sampling (see Section 2.2). These spike-encoded sequences are arranged into 

input tokens for the spiking transformer as described in Section 2.3.2. 

The model is trained using episodic supervision: for each task, the model observes the spike-

encoded pilot tokens and must correctly classify the query symbol vector. The output logits 

for the query are integrated over T time steps, and the average is passed through a softmax 

to produce a probability vector 𝑝̂ ∈ [0,1]|𝒮|×𝑁𝑡. The loss function is the sum of cross-entropy 

losses over all transmit dimensions: 

ℒ = ∑ CE(𝑝𝑗̂, 𝑠𝑞,𝑗)

𝑁𝑡

𝑗=1

, 

where 𝑝𝑗̂  is the predicted symbol distribution for transmit stream 𝑗, and 𝑠𝑞,𝑗 is the true one-

hot encoded symbol. 

Training is conducted using PyTorch and the SpikingJelly framework, which supports 

backpropagation through time (BPTT) for spiking networks using surrogate gradients. The 

channel sampling and pilot construction follow the Sionna simulator, ensuring realism in 

channel dynamics and symbol formation. The network is trained over thousands of 

independently drawn channel tasks, each treated as a distinct episode. Importantly, the 

model does not memorize or adapt to specific channels—it learns a task-agnostic strategy for 

inferring query outputs based solely on pilot examples. 

The use of fixed-length binary spike sequences ensures that the temporal dynamics are 

preserved across tasks and that the model develops time-resolved attention mechanisms. 

Through this training paradigm, the network learns to align pilot patterns with query inputs 

and reason over symbol relationships in a biologically inspired, event-driven manner. 

2.5 Evaluation of the Trained Spiking ICL Receiver 

This section presents an experimental evaluation of the proposed SNN-based ICL receiver. 

The model is assessed in terms of its symbol detection accuracy and energy efficiency in a 

realistic 2×2 MIMO wireless scenario, using QPSK modulation and a wide range of channel 

conditions. The performance is benchmarked against two baselines: (1) an ideal MMSE 

equalizer with full channel knowledge, and (2) an ANN-based ICL transformer implementation 

following the architecture proposed in [Zecchin et al., 2023], configured to match the SNN 

model in terms of size and training. 

2.5.1 Symbol Detection Performance 

The SNN-based ICL model is trained over a set of randomly generated MIMO tasks, each 

defined by a unique channel realization 𝐻 ∼ 𝒞𝒩(0,1) and noise variance σ2. A fixed context 

set of 𝑁 =  20 pilot symbols is used for adaptation, and performance is evaluated at an SNR 

of 10 dB. The model architecture comprises L = 4 decoder layers, an embedding dimension of 
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𝐷𝑒 = 256, and 𝑛ℎ = 8 attention heads. Inputs are quantized using a 4-bit mid-tread uniform 

quantizer with clipping boundaries 𝑙min = −4 and 𝑙max = 4. 

Figure 5 (left) shows the bit error rate (BER) achieved by the SNN and ANN transformers as a 

function of the number of pre-training tasks 𝑁Train, ranging from 20 to 215. The results reveal 

that the SNN achieves comparable performance to the ANN baseline when trained on a 

sufficient number of tasks. Notably, once 𝑁Train ≥ 25, the BER gap between the two models 

becomes negligible, and both models approach the accuracy of the ideal MMSE receiver. This 

demonstrates the strong generalization capacity of the spiking transformer, even in the 

presence of temporal spike-based encoding and logic-based attention.  

 

Figure 5 (Left) Detection BER for ANN and SNN transformers, pre-trained with varying numbers of tasks and 
tested under an SNR of 10 dB. Both models use 4 layers, 8 heads, and an embedding dimension of 256. (Right) 

Computing energy consumption and memory access energy consumption for ANN and SNN transformers of 
varying sizes, marked with the lowest BER achievable with a pre-training size of 32768. For the SNN model, the 

number of timesteps is set to T = 4 for both panels. 

2.5.2 Efficiency Analysis 

The SNN implementation offers significant improvements in energy efficiency compared to 

its ANN counterpart. The energy cost of inference is estimated by accounting for both 

computation and memory access, assuming 8-bit quantized parameters and activations, with 

data stored in on-chip SRAM. These estimates follow methodologies established in 

neuromorphic energy modeling literature [Pedram 2017; Buffa 2021; ACE-SNN 2022]. 

Figure 5 (right) presents the estimated energy consumption across several model 

configurations: (2,64), (4,128), (4,256), and (8,512). Each data point indicates the energy cost 

(compute + memory) and the corresponding BER at 10 dB SNR. For the smallest model 

configuration (𝐿 = 2, 𝐷𝑒 = 64), the SNN achieves a 20× reduction in computation energy and 

a 2.6× reduction in memory access energy compared to the ANN, at the cost of a slightly 

higher BER (0.070 vs. 0.047). As the model size increases, these energy advantages scale up 

further: the (𝐿 = 8, 𝐷𝑒 = 512) SNN model achieves an 86× reduction in computation energy 

and an 8.7× reduction in memory energy, while achieving better BER than the ANN (0.026 vs. 

0.030). 

These results demonstrate that spiking ICL architectures not only retain competitive accuracy 

but also unlock dramatic improvements in energy efficiency, particularly at larger model 

scales. The event-driven and sparse nature of spike-based computation is especially 

advantageous for latency-and energy-sensitive edge deployments, where minimizing 

memory movement and multiply-accumulate (MAC) operations is critical. 
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3 Hybrid Analog-Digital Hardware Acceleration for Spiking 

Transformers 

(This section synthesizes outcomes from T2.1.2 and T2.2.3) 

3.1 Motivation for Mixed-Signal Implementation 

The integration of SNNs with transformer architectures has demonstrated strong potential in 

enabling efficient and adaptive sequence modeling for wireless signal processing tasks, such 

as symbol detection via ICL. As discussed in Section 2, spiking transformers leverage sparse, 

temporally-coded binary spikes to replace conventional dense activation propagation with 

lightweight accumulate (AC) operations. This leads to significant algorithmic advantages in 

terms of energy savings and event-driven adaptability [17]. 

However, despite their theoretical efficiency, spiking transformers remain computationally 

inefficient when deployed on conventional digital hardware platforms, such as GPUs or CPUs. 

These platforms are optimized for dense, high-precision workloads (e.g., FP32/FP16 

arithmetic), whereas spiking models operate on binary or integer-valued, highly sparse 

temporal data. This mismatch manifests in multiple ways: 

• Poor resource utilization: Spiking layers produce sparse binary outputs, but GPUs still 

allocate resources for full-precision MAC operations. 

• Temporal bottlenecks: Spike-based processing unfolds over time steps, requiring 

repeated memory access and synchronization, resulting in high latency and energy 

overhead. 

• Memory inefficiency: Intermediate results must be stored and retrieved frequently in 

digital memory, further compounding energy costs. 

These limitations have motivated a growing interest in hardware-algorithm co-design for 

neuromorphic architectures. Yet, existing digital accelerators remain primarily tailored to 

ANNs, and even recent AIMC accelerators for transformers are built for ANN workloads—

where inputs and weights are both continuous and dense. 

By contrast, spiking transformers present distinct architectural opportunities and challenges. 

Their feedforward layers involve large-scale static weight matrices and sparse binary inputs—

making them ideally suited for analog in-memory acceleration. However, attention layers 

compute dynamic weightings that must be recomputed per input query, making them 

unsuitable for static analog arrays and better suited for digital or logic-based solutions. 

To address these complementary needs, we adopt a mixed-signal hardware approach: We 

use PCM-based AIMC for static-weight layers, where matrix weights are programmed once 

and reused efficiently without moving data. Furthermore, we implement SSA in lightweight 

digital logic, using spike-wise operations such as logical AND and counters to perform binary 

attention without multipliers or memory-intensive arithmetic. 

This combination of AIMC and stochastic computing constitutes the first hardware-native 

accelerator design tailored to spiking transformers. In the next sections, we explain the 
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capabilities and limitations of AIMC (Section 3.2),  detail the analog feedforward architecture 

(Section 3.3), and describe how we address this with logic-based SSA (Section 3.4). 

3.2 AIMC for Spiking Transformers: Capabilities and Limitations 

AIMC presents a promising direction for accelerating the feedforward components of spiking 

transformers by performing MVMs directly within memory arrays. This in-situ computation 

paradigm eliminates the need for extensive data movement between compute and memory 

units, which is a primary energy and latency bottleneck in conventional digital accelerators. 

Transformer architectures, where linear projections and feedforward layers dominate the 

computational load, can particularly benefit from such an approach. 

 

Figure 6 Illustration of a typical implementation of synaptic array with spike-encoded signals as input. 

As shown in Figure 6,each AIMC unit consists of a synaptic array implemented as a crossbar 

of devices. These devices are arranged at the intersections of word lines (WLs) and bit lines 

(BLs), with their conductance levels programmed to represent matrix weights. To support 

signed weights, each matrix element is encoded using a differential pair of NVM devices. In 

our implementation, 4-bit quantization is employed to strike a balance between precision and 

analog programmability. During inference, the input vector is applied as voltages to the BLs. 

According to Ohm’s Law, each active device produces a current proportional to its 

conductance and input voltage. The resulting currents from each column are summed at the 

source lines (SLs) based on Kirchhoff’s Current Law, producing the analog dot product 

between input and stored weights. 

These analog currents are sensed by multilevel current-mode amplifiers and converted into 

digital values via successive approximation-register (SAR) analog-to-digital converters (ADCs). 

To optimize area and latency, these readout circuits are time-multiplexed across columns 

using hardware multiplexers. In addition to the core compute path, peripheral components 
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such as buffers, decoders, and switching matrices are included to facilitate programmable 

control and efficient memory access. 

In spiking transformers, the inputs to the feedforward layers are temporally distributed binary 

spike trains. This encoding allows the analog synaptic arrays to operate directly on one-bit 

signals, avoiding the need for digital-to-analog converters (DACs) during inference. DACs are 

only used in the initial phase to program conductance levels that represent trained weights. 

Once programmed, these weights remain static throughout inference, enabling constant-

time 𝑂(1) execution of MVMs and making AIMC ideally suited for embedding, projection, and 

fully connected layers. 

However, despite its effectiveness in static-weight scenarios, AIMC is not suitable for 

implementing attention mechanisms. Attention layers rely on dynamic, input-dependent 

computation: each query token must be compared against keys, normalized, and used to 

reweight the values. This process requires intermediate matrices that change at every step, 

which AIMC cannot handle efficiently. 

Using AIMC for attention would involve frequent writes to NVM arrays, incurring high latency, 

energy overhead, and accelerating device wear. Moreover, analog circuits struggle to reliably 

implement nonlinear functions such as softmax, further limiting their practicality. Prior work 

confirms that even ANN-based AIMC accelerators typically offload attention to digital 

processors due to these limitations. 

Although spiking transformers simplify some of these computations using binary spike trains, 

attention weights still vary with every query. This prevents pre-programming in memory and 

renders static analog mapping ineffective. As a result, AIMC cannot efficiently realize 

attention in either spiking or conventional transformer architectures. 

The next section introduces a hardware-native solution that overcomes this limitation 

through spike-compatible stochastic logic, enabling dynamic attention without analog 

memory writes or multipliers. 

3.3 AIMC Engine: Spiking Neuron Tiles and Row-Block-Wise Mapping 

The AIMC engine is responsible for executing the static-weight operations in the spiking 

transformer architecture, specifically the feedforward and fully connected layers. It is built 

from a tiled structure where each spiking neuron tile consists of synaptic arrays, LIF units, and 

local buffers. The goal of this architecture is to minimize data movement and enable local 

accumulation of analog computations with spike-based neuron dynamics. 

3.3.1 Synaptic Array Architecture 

Each synaptic array comprises a fixed-size PCM crossbar configured to support analog matrix-

vector multiplication. Input spike-encoded vectors are streamed as voltage pulses across the 

word lines of the crossbar, and the resulting analog currents are collected along the bit lines. 

These currents represent the analog dot product between the input voltage and programmed 

conductance values. 
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To ensure reliability and mitigate parasitic effects, the crossbar size is constrained to 128×128 

cells. This constraint necessitates the partitioning of large weight matrices across multiple 

synaptic arrays and possibly across multiple tiles. For example, a 384×512 weight matrix is 

divided into twelve 128×128 sub-blocks. Each synaptic array is equipped with 16 shared ADCs 

(due to the sharing ratio of 8), allowing digitization of 16 outputs per clock cycle. The ADC 

outputs are routed directly into local computation units to minimize global memory accesses. 

The detailed configuration parameters for the synaptic array is shown in Table 1. 

Table 1 Synaptic Array Configuration Parameters 

Parameter Value 

Resistive device PCM 

Conductance resolution 4 bits 

Weight resolution 5 bits 

Devices per cell 2 

Crossbar dimension 128×128 

ADC resolution 5 bits 

ADC sharing ratio 8 

 

3.3.2 Row-Block-Wise Mapping Strategy 

The row-block-wise mapping strategy provides a systematic approach to assigning portions 

of a weight matrix to individual synaptic arrays and organizing computation within a tile. As 

shown in Figure 7, each row block of the full weight matrix is mapped to a set of synaptic 

arrays within a single tile. For example, in a 384×512 weight matrix, rows 129–256 are 

mapped to four 128×128 arrays (labeled SA 2-1 to SA 2-4) within Tile 2. The input vector of 

size 512×1 is segmented into four 128×1 subvectors and fed into these arrays in parallel. 

Each synaptic array computes a local partial sum corresponding to its submatrix. These partial 

sums are not stored externally but are immediately routed to a shared LIF unit associated 

with each output feature. The LIF unit aggregates the local contributions using a carry-save 

adder, updates the membrane potential, and triggers a spike if the potential exceeds a 

predefined threshold. This process enables spike generation in a strictly local manner and 

avoids the overhead of storing intermediate analog or digital pre-activation values. 

Each LIF unit integrates new pre-activations into its membrane state at every time step. If the 

membrane potential exceeds the stored threshold, a spike is emitted and the membrane state 

is reset. A digital right-shift operation is performed on the membrane register at each time 

step to emulate leaky integration, corresponding to a decay factor of \beta = 0.5. The 

comparator output is forwarded to the output buffer and subsequently to the shared SRAM. 

To ensure alignment across the multiple synaptic arrays and their shared ADCs, a unified MUX 

decoding scheme is applied. During each MUX cycle, 16 output features are read 

simultaneously from each SA, and the same decoding configuration is applied to all SAs within 

a tile. This guarantees that the local sums are correctly aligned and accumulated within their 

corresponding LIF units. 
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Figure 7 A illustration of the row-block-wise mapping strategy. 

This mapping and accumulation approach is particularly advantageous for spike-based 

architectures, as it enables each tile to operate autonomously and locally without frequent 

accesses to global memory. It significantly reduces memory access latency, avoids 

bottlenecks, and leads to improved energy efficiency by keeping computation close to the 

data source. 

3.4 SSA Engine: Hardware for Stochastic Spiking Attention 

To overcome the inefficiencies of analog attention mechanisms in AIMC and general-purpose 

digital processors, the spiking transformer employs a hardware-efficient SSA engine. This 

engine implements multi-head self-attention entirely in the spiking domain, leveraging 

stochastic computing to replace conventional matrix multiplications with bitwise logic 

operations. 

3.4.1 Stochastic Attention Tiles 

The SSA engine is composed of multiple SSA tiles, each assigned to compute the attention for 

one attention head. As shown in Figure 8, each tile contains a 𝑁 × 𝑁  grid of stochastic 

attention cells (SACs), where N denotes the sequence length. This structure supports fully 

parallel computation of all pairwise query-key interactions required for attention score 

calculation. Each SAC computes one element of the attention score matrix 𝑆𝑡 by receiving 1-

bit spike-encoded data from the corresponding query and key vectors. 

To compute the (𝑖, 𝑗)-th element of the attention score matrix 𝑆𝑡 , the SAC performs 𝑑𝐾 

bitwise AND operations between the iii-th row of 𝑄𝑡 and the 𝑗-th row of 𝐾𝑡, where 𝑑𝐾 is the 
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feature dimension. The results are accumulated using a counter, and the accumulated sum is 

then used to generate a stochastic Bernoulli sample via a comparator. This sample becomes 

the attention score 𝑆𝑖,𝑗
𝑡 , which is held in place for subsequent value weighting. 

Each SAC is equipped with a local FIFO shift register to buffer the corresponding j-th row of 

𝑉𝑡 . During the value-weighting phase, the held 𝑆𝑖,𝑗
𝑡  is combined via bitwise AND with the 

buffered 𝑉𝑡 , producing a local attention result. These outputs are summed across each 

column using a binary adder and passed through another Bernoulli sampling unit to yield 

elements of the final attention output matrix 𝐴𝑡. Because each SSA tile handles one attention 

head, the full multi-head attention output is obtained by instantiating multiple tiles operating 

in parallel. 

 

Figure 8 Block diagram of an N × N SSA tile. 

3.4.2 Random Number Generation and Bernoulli Sampling 

Bernoulli sampling within the SSA tiles is implemented using simple integer comparison. 

Rather than performing normalization of accumulated sums in analog or digital circuits, each 

accumulator output is compared to a uniformly distributed pseudo-random integer sampled 

from the interval [0, 𝐼max], where 𝐼max = 𝑑𝐾 for attention scores and 𝐼max = 𝑁 for attention 

outputs. This avoids expensive division or floating-point operations. By choosing 𝑑𝐾 and 𝑁 as 

powers of two, hardware can exploit bit-width-aligned random values and fixed-point 

arithmetic. 

Each SSA engine includes an LFSR-based PRNG array, supplying all required random numbers 

to the Bernoulli samplers across SACs. To maximize hardware utilization, a 32-bit LFSR is 

tapped byte-wise to generate multiple 8-bit random samples per clock cycle. This ensures that 

multiple SACs can be served simultaneously without requiring additional RNG hardware. 
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3.4.3 Streaming Dataflow and Pipelining 

During inference, 𝑄𝑡, 𝐾𝑡, and 𝑉𝑡 are streamed into the SSA engine in a matrix-wise, time-

serial manner. Each matrix is transmitted column by column over 𝑑𝐾 cycles. The SACs perform 

one logical AND operation per cycle and accumulate results internally. After 𝑑𝐾 cycles, 

attention scores 𝑆𝑡 are generated in parallel. Value weighting proceeds immediately in the 

next 𝑑𝐾 cycles, using the held scores and buffered values to compute the attention output 

𝐴𝑡. The dataflow is shown in Figure 9. 

 

Figure 9 Illustration of dataflow design for the attention operation of each (i, j)-th SSA tile. 

This streaming approach eliminates the need to store intermediate matrices globally, allowing 

the SSA engine to operate in a pipelined fashion. Each tile starts processing a new time step 

as soon as the previous one finishes. Due to the stateless design of SACs and LFSRs, SSA tiles 

can be reused across layers, minimizing area overhead. 

The alternating execution of AIMC and SSA engines is coordinated via shared on-chip SRAM 

buffers. This buffer stores spike-encoded sequences between layers and ensures smooth data 

handoff between the AIMC and SSA processing phases, maintaining a continuous dataflow 

across the transformer blocks. 

3.5 Hybrid Integration and System Design Considerations 

The alternating roles of the AIMC and SSA engines are unified under a modular hybrid 

architecture designed to process spiking transformer workloads with high efficiency. This 

integration addresses both computational and memory transfer bottlenecks by distributing 

workload responsibilities between analog in-memory computing for static-weight matrix 

operations and logic-based stochastic computing for dynamic attention layers. 

3.5.1 Temporal and Structural Modularity 

The system operates under a time-multiplexed scheduling regime in which the AIMC engine 

processes static-weight feedforward and fully connected layers, while the SSA engine 

executes the multi-head attention computations. As shown in Figure 10, each engine is 

spatially separated and interconnected via on-chip shared SRAM buffers. This decoupling 

allows the engines to operate at their optimal timing granularity: token-wise streaming for 

the AIMC engine and matrix-wise streaming for the SSA engine.  

This architectural modularity provides several advantages: 

• Pipeline continuity: The event-driven execution is sustained without interruption by ping-

pong buffering between SRAM banks, enabling overlap between data preparation and 

computation. 
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• Layer reusability: SSA tiles and LIF neuron logic are stateless across layers, which supports 

layer-wise reuse without additional reset or reconfiguration overhead. 

• Clock domain separation: Each engine can be clocked independently based on its 

operational critical path and throughput requirement. 

 

 

Figure 10 The overall hybrid analog-digital system architecture. 

3.5.2 Data Flow Alignment and Spike Handling 

The spike-based dataflow is carefully synchronized between the AIMC and SSA engines. As 

shown in Figure 11, in the AIMC engine, spike-encoded embeddings are propagated 

sequentially over 𝑇 time steps, with membrane potentials in LIF units updated and reset at 

the granularity of individual tokens. Once the sequence of NNN token embeddings has been 

processed through the feedforward layers, the generated 𝑄𝑡 , 𝐾𝑡 , and 𝑉𝑡  embeddings are 

passed to the SSA engine. 

The SSA engine expects full matrices at each time step and operates using column-wise 

streaming to compute the attention result. After generating the output matrix 𝐴𝑡 , the 

attention-modulated embeddings are re-encoded as spike sequences and returned to SRAM. 

These are then processed by the next AIMC-based layer. 

This separation of spike flow dynamics ensures compatibility between token-level processing 

and sequence-level attention without forcing uniform granularity across components. The 

design avoids storing membrane potentials across time steps for the SSA engine and 

eliminates the need for spike re-alignment or time expansion modules. 
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Figure 11 Illustration of the system inference dataflow. 

3.5.3 Energy and Area Efficiency Profiling 

The division of labor between analog and digital domains is optimized to minimize total 

energy and area consumption. Energy-intensive operations such as matrix-vector 

multiplications are offloaded to the AIMC engine, leveraging the constant-time execution and 

local accumulation of synaptic arrays. Meanwhile, attention logic, which is dynamic and non-

static by nature, is executed by lightweight SSA logic using binary operations only, reducing 

the reliance on high-precision arithmetic or memory-intensive buffering. 

From a hardware utilization standpoint, analog computation is distributed across many 

parallel columns in the AIMC crossbars, allowing efficient use of area and current flow. Digital 

logic for stochastic attention leverages bitwise sparsity and logical regularity, which allows 

synthesis with compact combinational logic blocks without requiring complex arithmetic 

units. Both the AIMC and SSA engines operate with shared SRAM and minimal communication 

interfaces between them, which helps to lower routing complexity and avoids the need for 

large shared caches or off-chip memory access. This hybrid analog-digital design achieves 

significant reductions in computational energy, control overhead, and processing latency. As 

a result, the architecture effectively meets the strict energy and real-time performance 

demands of edge AI signal processing in future wireless communication systems. 
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4 Spiking Neural Receiver: Training, Hardware Adaptation, and 

Demonstration 

(This section introduces the training, calibration, and evaluation protocols developed in T2.2.4) 

The spiking neural receiver introduced in Section 2 offers a biologically inspired solution to 

edge signal processing through ICL. By encoding pilot and data sequences as temporally 

sparse spikes, the model performs adaptive symbol detection without relying on explicit 

channel estimation. The use of a transformer backbone enables effective context reasoning 

over short sequences, while the spike-based formulation ensures compatibility with energy-

efficient event-driven computation. Section 3 outlined a corresponding hardware design that 

implements this model on a hybrid architecture. AIMC is used to accelerate static-weight 

operations such as embedding and feedforward projection, while SSA provides a lightweight 

and hardware-native implementation of the attention mechanism. Together, these 

components form an integrated analog-digital substrate tailored to the demands of ICL-based 

neuromorphic inference. 

This section focuses on completing the design-to-deployment pipeline. First, we describe how 

the ICL model is trained with hardware constraints in mind, including quantization, noise 

robustness, and spike rate control. Next, we detail how weights and neuron parameters are 

mapped to the AIMC and SSA engines and how the system is calibrated to account for device 

variation and signal timing. Finally, we present the full inference dataflow of the deployed 

receiver and evaluate its performance and energy efficiency under realistic MIMO channel 

conditions. 

4.1 Hardware-Aware Training and Calibration for Analog Deployment 

The training process for the spiking neural receiver follows a two-stage methodology. The first 

stage involves hardware-agnostic digital pre-training in an ideal simulation environment, 

where the network parameters are optimized without considering hardware-induced 

nonidealities. The second stage introduces hardware-aware fine-tuning using AIHWKit, 

incorporating statistical models of PCM variability, quantization, and drift to adapt the model 

to the real-world behavior of AIMC systems. Together, these stages prepare the network for 

robust deployment on the hybrid analog-digital hardware platform. 

Following hardware-aware training, the spiking neural receiver requires system-level 

calibration techniques to maintain inference robustness under persistent nonidealities such 

as conductance drift, quantization noise, and device variability. This section details the 

runtime strategies implemented to mitigate performance degradation during deployment. 

These techniques, operating on top of the hardware-aware model trained in Section 4.1, 

ensure that energy-efficient and accurate inference remains feasible across extended 

operational lifespans. 
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Figure 12 Comparison between experimentally measured PCM conductance drift (top, adapted from Joshi et 
al.) and the statistical drift model implemented in AIHWKit (Adapted from IBM AIHWKit documentation.). The 

plots show the normalized conductance values of multiple PCM cells over time, illustrating the long-term decay 
behavior and variability across devices. This agreement validates the realism of AIHWKit's drift modeling for 

use in hardware-aware training and simulation.  

 

4.1.1 Modeling Drift and Noise in PCM Devices 

Conductance drift is one of the most prominent sources of nonideality in PCM-based AIMC 

[18]. After initial programming, a PCM cell’s conductance degrades over time following a 

power-law behavior. The conductance 𝐺(𝑡) evolves from its initial value 𝐺0 according to the 

expression 𝐺(𝑡) = 𝐺0 (
𝑡

𝑡0
)

−𝜈

, where \nu denotes the drift exponent and typically falls 

between 0.05 and 0.12. This drift reduces the synaptic current output for a given input 

voltage, resulting in progressively smaller matrix-vector multiplication outputs and ultimately 

impairing network inference. 

As shown in Figure 12, the drift becomes particularly severe for high-exponent devices or 

longer post-programming intervals. In addition to drift, noise arises during write operations 

and due to cycle-to-cycle variability. Even under the same programming condition, the actual 

programmed conductance exhibits a distribution around the target value, modeled as 

Gaussian noise. Figure illustrates this deviation, emphasizing how random variation in write 

conductance accumulates over large matrix dimensions. Furthermore, the limited resolution 

of PCM introduces quantization effects. Each device supports only a fixed number of stable 

conductance states, typically around 16 levels in 4-bit encoding.  

These nonidealities—drift, noise, and quantization—collectively degrade inference accuracy 

if left unaddressed. While AIHWKit simulates these effects during training, practical 

deployments demand dynamic calibration to correct the evolving hardware state. 
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4.1.2 Ideal Digital Pre-Training 

The initial training is performed in a clean digital environment using the SpikingJelly 

framework. This stage establishes a strong baseline model for symbol detection using ICL. The 

spiking neural transformer is trained with LIF neurons, time window length 𝑇, 8-bit weight 

resolution, and QKV projections for multi-head self-attention. Input sequences are spike-

encoded using Bernoulli sampling from their normalized amplitudes. 

As detailed in Section 2.4, The training objective is to minimize cross entropy loss on the 

output token spikes, averaged across time steps. The context sequence 𝒞 provides pilot labels 

for inference. The model outputs one-hot spike vectors per symbol class, which are compared 

with the ground truth to compute a standard cross-entropy loss. 

BPTT is implemented using Sigmoid surrogate gradients. We use the AdamW optimizer with 

cosine learning rate decay and early stopping based on validation accuracy. All operations 

during this phase assume ideal, noise-free 8-bit computation. 

This phase ensures that the network architecture and parameterization can solve the target 

MIMO detection tasks when unconstrained by hardware limitations. Once convergence is 

reached, the model parameters are exported for noise-injected hardware-aware adaptation. 

4.1.3 Hardware-Aware Fine-Tuning with AIHWKit 

To adapt the ideal model for physical deployment, we perform a second fine-tuning stage, 

referred to as hardware-aware training (HWAT), using AIHWKit, which simulates analog 

nonidealities of PCM-based AIMC. The pre-trained weights are quantized to 4-bit resolution 

and mapped to conductance values across the NVM crossbars. The following device-level 

imperfections are modeled during forward propagation: 

• Quantization and programming noise: Limited resolution and stochastic write 

behavior are simulated during weight assignment. 

• Device-to-device variability: Conductance samples for identical weight values vary 

spatially due to fabrication mismatches. 

• Conductance drift: Temporal evolution of PCM conductance is captured using a 

logarithmic decay model. 

During this phase, forward passes include stochastic perturbations to emulate the noisy 

behavior of analog memory during inference. However, gradients are computed under 

idealized assumptions to preserve training stability. This technique, known as noise-injected 

forward propagation, allows the model to learn a representation that is robust against noise 

while avoiding destabilizing the gradient flow. 

We use the same loss function and optimizer as in the pre-training stage. The objective here 

is not to relearn the task but to adjust the weights within their feasible analog representation 

range to maintain accuracy in the presence of hardware-induced distortions. 
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Figure 13 Statistical modeling of PCM weight degradation across time, as implemented in AIHWKit. The process 
starts with pretrained weights W mapped to target conductances 𝐺𝑇, followed by programming noise injection 

(𝛥𝐺prog). Over time, conductance values drift and are further perturbed by read noise at each measurement 

point. The model reflects the cumulative effect of these nonidealities on inference, supporting accurate 
simulation of AIMC behavior during hardware-aware training. (Adapted from IBM AIHWKit documentation.) 

Figure 13 referenced from the AIHWKit documentation support the realism of the simulated 

environment and validate the coverage of critical nonidealities during training. 

4.1.4 Global Drift Compensation via Online Calibration 

In spiking neural receivers, output information is encoded not just in value but also in time. 

The timing of spikes is crucial to inference performance, particularly in low-timestep 

configurations where spike sparsity is leveraged for energy efficiency. Conductance drift 

reduces output current, which in turn slows down the charging rate of the membrane 

potential in LIF neurons. As a result, the neuron may spike later than expected or fail to spike 

altogether, leading to temporal mismatches and information loss. 

To address the runtime effects of drift without reprogramming weights, the spiking receiver 

employs global drift compensation (GDC). This technique estimates the scale at which 

synaptic outputs are reduced due to drift and compensates for the shift by applying a gain 

correction to all downstream outputs. The gain factor is estimated using calibration inputs 

periodically injected into the AIMC array. Known voltage patterns are applied, and the 

resulting output currents are compared with reference values stored during initial 

deployment. From this comparison, a scalar correction factor 𝛼 is derived. 

The scalar is applied to all subsequent outputs from the affected SA or tile, restoring their 

amplitude to the correct operational level. Since the calibration pattern is fixed and the 

operation is purely multiplicative, it can be performed by the system controller during idle 

periods with minimal latency. Figure 14 demonstrates the procedure of this calibration.  

The gain factor may be applied at the granularity of individual SAs or groups of tiles, 

depending on the uniformity of drift observed across the hardware. The compensation 

mechanism is implemented with minimal overhead using on-chip accumulators and is 

compatible with shared ADC and LIF configurations used in the spiking neuron tiles. 
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Figure 14 Global Drift Compensation (GDC) mechanism for PCM-based synaptic arrays. A known calibration 
voltage 𝑉cal is applied to a subset of 𝐿 columns, and the resulting current 𝐼cal is measured. The gain correction 
factor 𝛼̂ is computed by comparing the measured current to the expected conductance sum, and this factor is 
used to rescale the matrix-vector multiplication output. This method corrects for drift-induced amplitude loss 

without requiring individual cell reprogramming. (Adapted from IBM AIHWKit documentation.) 

4.2 Accuracy and Robustness Evaluation 

We evaluate the inference accuracy and robustness of the spiking neural receiver under 

hardware constraints. The same ICL symbol detection task as conducted in Section 2.5. Results 

are obtained using a simulated hardware environment incorporating the analog nonidealities 

introduced in Section 4.1, using AIHWKit simulator. 

4.2.1 Accuracy Evaluation 

The ICL task follows the decoder-only formulation described in Section 2.3.2, where the 

receiver processes a sequence of pilot (query-answer) pairs and uses them to infer the correct 

label of a target symbol passed through an unknown MIMO channel. We evaluate the model 

under two antenna configurations—2×2 and 4×4 MIMO—corresponding to different levels of 

task complexity. 

The number of query-answer pairs is fixed at 18. Accuracy is quantified using the BER, with 

lower BER indicating higher classification accuracy. We compare the spiking receiver deployed 

on the proposed hybrid analog-digital hardware (SNN-Hybrid) against two baselines: ANN-

Digital, a full-precision transformer executed on digital devices; and SNN-Digital, a software-

based SNN transformer executed digitally. All models are INT8-quantized during testing. 

Results are summarized in Table 2. In the 2×2 setting, both SNN-Hybrid and SNN-Digital 

achieve competitive BERs using similar spike encoding lengths. For example, the SNN-Hybrid 

(4-256) achieves a BER of 0.067 using 6 time steps, while the SNN-Digital of the same size 

yields 0.061 with the same number of steps. As the number of antennas increases to 4×4, the 

problem becomes more complex due to the exponential growth in symbol classes. In this 

setting, the BER of smaller models degrades significantly. 

 

Notably, scaling the model size from 4-256 to 8-512 significantly improves accuracy for both 

SNN-Digital and SNN-Hybrid. However, the benefit is more pronounced in SNN-Hybrid, which 

achieves a 0.114 BER reduction with 6 fewer time steps, compared to 0.110 reduction with 
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only 3 fewer steps in SNN-Digital. This demonstrates that SNN-Hybrid benefits more from 

increased model capacity, likely due to its ability to average out hardware noise and stochastic 

variations more effectively when equipped with higher-dimensional internal representations. 

Table 2 Accuracy Performance on In-Context Learning for Wireless Symbol Detection 

Model 
Size  

Depth-Dim 
2 × 2 Antennas 

BER (T) 
4 × 4 Antennas 

BER (T) 

ANN-Digital 
4-256 0.051 0.141 

8-512 0.049 0.077 

SNN-Digital 
4-256 0.061 (6) 0.196 (7) 
8-512 0.058 (4) 0.086 (4) 

SNN-Hybrid 
4-256 0.067 (6) 0.205 (11) 
8-512 0.063 (4) 0.091 (5) 

 

4.2.2 Robustness under Long-Term Conductance Drift 

To assess the long-term robustness of the spiking receiver on the proposed hybrid analog-

digital hardware platform (hereafter referred to as SNN-Hybrid), we evaluate its performance 

under conductance drift using the AIHWKit drift model described in Section 4.1.1. We 

simulate one year of drift in PCM devices and track BER degradation over time across different 

training and calibration strategies. 

We consider four combinations of training and compensation: (i) conventional training (CT) 

without drift correction; (ii) CT with GDC; (iii) HWAT without GDC; and (iv) HWAT combined 

with GDC. In all cases, we observe the long-term trend of accuracy decay under simulated 

deployment. 

Table 3 Long-term BER on ICL Symbol Classification Task (4 × 4 Antennas) 

Size CT+NC HWAT+NC CT+GDC HWAT+GDC 
4-256 0.475 (+0.27) 0.460 (+0.255) 0.268 (+0.063) 0.224 (+0.019) 
8-512 0.503 (+0.412) 0.511 (+0.420) 0.152 (+0.061) 0.106 (+0.015) 

 

The results in Table 3 show that both CT+NC and HWAT+NC degrade significantly after one 

year, with final BER values of 0.503 and 0.511, respectively, for the 8-512 model. Adding GDC 

significantly improves long-term performance: CT+GDC results in a long-term BER of 0.152 

(with an absolute BER increase of 0.061 in one year, compare to newly programmed 

hardware), while HWAT+GDC pushes it further to as low as 0.106, with only an absolute BER 

increase of 0.015 in one year. The 4-256 models show similar long-term performance. Under 

HWAT+GDC, its final BER remains as low as 0.224, with only a 0.019 increase compared to the 

drift-free case. 

The results confirm that both HWAT and GDC strategies are critical for stable long-term 

inference. GDC alone yields substantial improvements by correcting for global conductance 

degradation, while HWAT provides a learned tolerance to low-level hardware noise. The 

combination of the two consistently delivers the lowest error rates across model sizes. 
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These findings emphasize the need to co-optimize model capacity, training strategy, and drift 

compensation to achieve durable deployment of neuromorphic receivers. With HWAT and 

periodic GDC updates, the spiking receiver maintains reliable symbol detection performance 

over time, even in the presence of physical hardware degradation. 

4.3 Efficiency Evaluation 

This section presents the runtime efficiency of the spiking neural receiver during ICL-based 

symbol detection, evaluated under realistic hardware settings incorporating AIMC and SSA 

modules. All results reported here are obtained from hardware-simulated inference, 

accounting for analog nonidealities such as conductance drift, quantization, and peripheral 

circuit overhead. We report computational and memory access energy, latency, area 

breakdown, and comparative performance against state-of-the-art transformer accelerators. 

The ICL task tested here uses the 4×4 MIMO configuration, representing a high-complexity 

detection scenario for real-world neuromorphic communication systems. 

4.3.1 Runtime Energy Consumption 

Energy consumption is broken down into two components: computational energy (including 

MAC or AC operations) and runtime memory access energy. SNN-Hybrid is evaluated against 

three baselines: (i) ANN-Quant, a state-of-the-art digital transformer accelerator with INT8 

MACs; (ii) ANN-Quant+AIMC, which replaces MACs with PCM-based AIMC arrays; and (iii) 

SNN-Digi-Opt, a digital implementation of spiking transformers using integer arithmetic and 

masked additions. 

 

Figure 15 Energy consumption comparison between SNN-Hybrid and baseline implementations on the ICL 
symbol detection task (4 × 4 antennas). 

 

All energy estimations assume INT8 precision for storage, uniform SRAM access, and 

preloaded weights in cache. Spike-based models are evaluated using the minimum required 
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encoding length 𝑇 for convergence (Section 4.2.1). Hardware energy models are obtained 

using DNN+NeuroSim V1.4 and synthesized with Cadence 45nm PDK for SSA. 

Figure 15 compares the total energy consumption across baselines on the 4×4 antenna ICL 

task. SNN-Hybrid consistently outperforms all baselines. It achieves 7–14.5× lower energy 

than ANN-Quant, 2.6–4.0× lower than ANN-Quant+AIMC, and 1.6–1.8× lower than SNN-Digi-

Opt. These savings are attributed to two main factors: the efficiency of in-memory MAC 

execution via AIMC, and the use of logic-gate-based SSA instead of integer multipliers. 

 

Figure 16 Breakdown of SNN-Hybrid computational energy. 

Energy breakdown analysis (Figure 16) reveals that 78.4% of SNN-Hybrid computational 

energy is consumed by the AIMC engine, 18.9% by the SSA engine, and only 2.7% by residual 

units. Within the AIMC engine, 85.9% of energy is used by peripheral circuits such as decoders, 

MUXes, and buffers, while ADCs contribute just 2.0%. This is enabled by multiplexed ADC 

sharing (ratio of 8), which reduces static energy overheads. Accumulation circuits, including 

CSAs and LIF units, account for the remaining 12.1%. 

Memory access energy is significantly lower than in ANN-based baselines. SNN-Hybrid avoids 

softmax operations and high-bit activations, and further reduces memory overhead by 

eliminating the need to store pre-activations through its row-block mapping strategy and 

SRAM-local dataflow. Additionally, the SSA engine performs all attention computations 

without intermediate storage, reducing total data movement. 

4.3.2 Latency and Area Analysis 

Figure 17 (left) presents the latency breakdown for one inference pass. More than 92% of the 

latency originates from peripheral operations, including data routing, buffering, and decoding. 

AIMC MVM latency is negligible (0.3%) due to constant-time crossbar execution. SSA logic, 

implemented using basic gates and counters, contributes just 2.0% to total latency. 

In Figure 17 (right), SNN-Hybrid is compared to GPU-based inference using an ANN 

transformer and a spiking transformer implementation. Despite the extra temporal steps 

required by SNNs, SNN-Hybrid achieves a 2.18× speedup over the ANN baseline and a 6.85× 

speedup over the SNN-Digital implementation. These gains are due to efficient in-memory 

computing, stateless SSA execution, and avoidance of GPU-incompatible operations such as 

binary masking. 
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Figure 17 (Left) Latency breakdown of SNN-Hybrid and (Right) Latency comparison with ANN and SNN 
transformers on GPU. 

Area estimation using NeuroSim and Cadence synthesis indicates a total area of 784 mm². The 

area breakdown is shown in Figure 18. The AIMC computing core (crossbars, ADCs, 

accumulators) occupies 11.5%, SSA tiles take 12%, and periphery and interconnect (IC) logic 

dominate with 76.5%. Compared to ALU-based architectures, the SSA engine achieves 

compact layout through simple control and logic gates. 

 

Figure 18 Chip area breakdown of the proposed hybrid analog-digital architecture. 

4.3.3 Comparison with State-of-the-Art Accelerators` 

Table 4 compares the proposed hybrid analog-digital architecture against SwiftTron [19] 

(digital ANN accelerator) and X-Former [20] (AIMC-based ANN transformer). On a normalized 

ICL benchmark, SNN-Hybrid consumes 13× less energy than SwiftTron and 6× less than X-

Former. Latency is also improved due to SSA’s lightweight design and the use of PCM multi-

level cells, which reduce device count and memory footprint. 

Notably, SwiftTron saves area via time-multiplexing, increasing runtime energy due to 

repeated memory accesses. X-Former stores attention intermediates in SRAM-based DIMC 

units, introducing latency overhead not present in SNN-Hybrid’s logic-gate-based SSA flow. 
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Table 4 Comparison with SOTA Accelerators 

Performance Metric SwiftTron [19] X-Former [20] Proposed [21] 
Computing Paradigm ANN ANN SNN 
MAC Implementation Digital ALU ReRAM-AIMC PCM-AIMC 

MHSA Implementation Digital ALU DIMC SSA 
Technology 65 nm 32 nm 45 nm 

Weight Precision INT8 INT8 (Equiv.) INT5 (Equiv.) 
Activation Precision INT8/32 INT8 Multi-Step Binary 

Frequency 143 MHz 200 MHz 200 MHz 
Area (mm²) 273.0 – 784 

Energy/Inference (mJ) 3.97 2.04 0.30 
Latency/Inference (ms) 2.26 4.13† 2.18i1 

 

4.3.4 Scalability 

The proposed architecture is designed for scalable deployment. The SSA engine is stateless 

and modular, supporting reuse across attention heads and layers. Its 1-bit I/O buses minimize 

wiring complexity and ensure fast propagation. Meanwhile, the AIMC engine scales spatially 

via row-block-wise mapping and benefits from PCM's multi-level storage density. Compared 

to 1-bit ReRAM, PCM enables 3× fewer devices for the same precision, and similar cell sizes 

(4F²–8F²) support dense physical layouts [9]. 

For large-scale models, the architecture supports multi-tile scaling and chip-to-chip 

interconnects, enabling distributed deployment for MIMO scenarios beyond 4×4 antennas. 

 
1 The latency results for X-Former and X-Former account for both computational latency and data movement 
from memory to computing cores, while that for SwiftTron accounts only for computational latency. 
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5 Conclusion 

This deliverable provides a complete design, implementation, and evaluation of a spiking 

neural receiver built to meet the energy efficiency and adaptability demands of future 6G 

wireless systems. By combining SNNs with a hybrid analog-digital hardware architecture, the 

system achieves accurate symbol detection under dynamic channel conditions while 

maintaining ultra-low energy consumption. 

The report begins by establishing the theoretical foundation for neuromorphic computing and 

ICL, which enables selective and efficient processing of wireless signals. Based on this, a 

hardware architecture was developed that integrates analog AIMC cores for feedforward 

operations with a SSA engine tailored for binary spike-based inputs. The architecture avoids 

intermediate buffering and reduces data movement, resulting in a streamlined and scalable 

inference pipeline. 

To ensure robustness on non-ideal analog hardware, a hardware-aware training framework 

was introduced. This approach includes quantization, noise, and conductance drift modeling 

during training. Calibration procedures, such as global drift compensation, further stabilize 

inference over time. Testing on simulated hardware confirmed that the receiver maintains 

strong BER performance on wireless ICL tasks, while consuming significantly less energy and 

incurring lower latency than conventional digital baselines. 

Energy and latency analyses demonstrated that the receiver outperforms state-of-the-art 

ANN and SNN accelerators, especially under larger model configurations. The system also 

maintains long-term reliability, with minimal accuracy degradation over time, even under 

analog drift. 

This work successfully completes the contributions set out in Tasks T2.1.2, T2.1.3, T2.2.3, and 

T2.2.4. It delivers a unified system that combines algorithmic design, hardware co-

optimization, and calibration strategies into a viable neuromorphic transceiver platform 

suitable for edge deployment in real-world 6G communication environments. 
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