
This project has received funding from the European Union’s Smart Networks and Services Joint 
Undertaking (SNS JU) under grant agreement No. 101096379.                  
 

Horizon Europe Framework Programme 
 

  
Towards an AI-native, user-centric air interface 

for 6G networks 
______________________________________________________ 

 

D3.5 Report on End-to-End Air-Interface 
Learning 

Contractual Delivery Date: 30.06.2025 
Actual Delivery Date:  25.06.2025 
Editor: (name, organization) Sebastian Cammerer, NVIDIA 
Deliverable nature: Report 
Dissemination level:  Public 
Version:  1.0 
Keywords: End-to-end learning, air-interface learning, Constellations 

ABSTRACT 

This report explores the feasibility and practical relevance of end-to-end learning approaches for next 
generation 6G air interfaces. Our research focuses on three key innovations: pilotless communication 
systems, scalable symbol modulation learning, and joint source channel coding for short packet 
transmissions. The pilotless communication system eliminates traditional reference signals by jointly 
training a neural receiver with custom trainable constellations, embedding channel estimation 
mechanisms implicitly within the transmitted data. This approach demonstrates competitive block 
error rates while achieving up to 8% higher goodput compared to 5G NR baseline implementations 
due to a reduced piloting overhead. We further introduce a scalable autoencoder structure capable 
of supporting any M-ary modulation through a single AI/ML model, with robustness against non-
linear impairments as expected in future high-frequency communications. For short packet 
transmissions, we propose joint source channel coding and modulation (JSCCM) mechanisms 
specifically optimized for compressed CSI feedback, addressing implementation challenges like an 
increased peak-to-average power ratio (PAPR) when multiplexing with other logical channels. These 
innovations require minimal modifications to existing infrastructure, providing a practical pathway 
toward intelligent, reconfigurable physical layers for future wireless systems while maintaining 
backward compatibility with current standards. 
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Executive summary  
The CENTRIC project aims to develop an AI-native, user-centric air interface for 6G networks, 
with this report focusing specifically on end-to-end air-interface learning approaches. As 
wireless networks evolve toward 6G, they face increasing demands for spectral efficiency, 
adaptability to emerging applications, and resilience to hardware limitations. Our research 
addresses these challenges through three interconnected innovations: pilotless 
communication systems, scalable symbol modulation learning, and joint source-channel 
coding for short packets. 

Pilotless Communication Systems 

A significant portion of our work demonstrates the feasibility of communication systems that 
function without traditional pilot signals. Current 5G NR implementations rely heavily on 
demodulation reference signals (DMRS) for channel estimation, which consume valuable 
spectrum resources. Our approach eliminates this overhead by jointly training a neural 
receiver capable of sophisticated signal processing and a custom trainable constellation that 
adapts to channel characteristics. 

Through end-to-end learning, the system discovers optimal constellation configurations that 
embed channel estimation mechanisms implicitly within the transmitted data. We observe 
the emergence of "anchor symbols" that function as self-organized reference points, enabling 
accurate channel estimation without dedicated pilots. Performance evaluations reveal that 
this pilotless system not only matches conventional approaches in terms of block error rate 
but achieves up to 8% higher goodput due to reduced overhead. 

The system also demonstrates robust performance when trained to compensate for hardware 
impairments like carrier frequency offset. Importantly, these gains can be realized with 
minimal modifications to existing 5G NR implementations, requiring only custom modulation 
tables and a non-piloting mode, both achievable through minor protocol extensions. 

Scalable Symbol Modulation Learning 

To address the challenges of supporting diverse modulation schemes, we propose a scalable 
autoencoder structure capable of handling any M-ary modulation through a single AI/ML 
model. This innovation eliminates the need to train separate networks for each modulation 
order, providing significant implementation advantages. 

The system includes a neural network-based symbol modulator that converts encoded bits to 
complex symbols, a corresponding demodulator that maps received signals back to bits, and 
a flexible architecture supporting different constellation sizes through zero-padding. For 
practical deployment, we outline signaling mechanisms and training procedures, including a 
proposed Training Reference Signal (TR-RS) for online adaptation. 

Our simulation results demonstrate that this approach not only matches the performance of 
traditional QAM in AWGN channels but also significantly outperforms conventional 
modulation in the presence of non-linear impairments such as phase noise—a critical 
advantage for high-frequency communications in the sub-THz bands. 
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Joint Source Channel Coding for Short Packets 

The third innovation addresses the specific challenges of short packet transmissions, focusing 
on compressed Channel State Information (CSI) feedback. Rather than treating compression, 
channel coding, and modulation as separate processes, we propose a joint source channel 
coding and modulation (JSCCM) approach that integrates all three functions within a single 
end-to-end optimized system. 

This approach eliminates inefficiencies from converting between different signal domains, 
optimizes the entire transmission chain for the specific characteristics of CSI data, and 
achieves higher compression efficiency with the same complexity. We specifically address 
practical implementation challenges, such as increased Peak-to-Average Power Ratio (PAPR) 
when non-QAM symbols are multiplexed with other logical channels. The report outlines 
three modes for CSI reporting and provides methods for resource allocation that minimize 
PAPR impact, ensuring compatibility with existing systems. 

Conclusion and Future Directions 

The innovations presented in this report demonstrate the potential of end-to-end learning 
approaches to transform wireless physical layer design. By jointly optimizing signal processing 
blocks that were traditionally designed in isolation, we achieve significant performance gains 
while maintaining practicality for real-world deployment. 

As the wireless ecosystem moves toward cloud-native and AI-driven architectures, these 
approaches provide a foundation for a scalable, intelligent, and reconfigurable physical layer. 
Our work aligns with the CENTRIC vision of continuous adaptation even after deployment, 
allowing communication systems to evolve in response to new applications, hardware 
innovations, and regulatory changes. Future research will expand these concepts to multi-user 
scenarios, investigate online adaptation mechanisms, and contribute to standardization 
efforts for AI-native communication protocols in 6G and beyond. 
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1 Introduction  

One of the core promises of the CENTRIC project is the development of communication 
systems that are capable of continuous adaptation even after deployment. Unlike 
conventional wireless systems that remain fixed in design for a decade or more, CENTRIC 
envisions future systems that can evolve post-deployment to meet the rapidly changing 
demands of emerging applications, hardware innovations, and spectrum regulations. This 
vision is particularly relevant given the accelerated pace of technological change. New use 
cases emerge on the timescale of months—often long after the rollout of a wireless standard. 
Similarly, semiconductor technology nodes and hardware capabilities advance continuously, 
creating a moving target for system design. Meanwhile, regulatory bodies are increasingly 
opening up new spectrum bands that could be exploited by flexible, software-defined radios. 
In such a dynamic environment, communication systems that can adapt their transmission 
behavior after deployment become essential for resilience, scalability, and long-term 
usability. 

Another aspect of end-to-end (E2E) learning, is the capability to optimize systems with 
respect to an end-to-end performance metric. While classical systems are typically composed 
as chains of individually optimized signal processing blocks (such as the channel coding, 
demapper, or the equalizer), the E2E learning idea promises system optimization directly with 
respect to the final performance metric such as the overall block error rate. 

Within this broader context, the work reported here explores end-to-end learning of the air 
interface—a novel approach that aligns with and extends the CENTRIC roadmap. While other 
efforts, particularly in Task 3.4, focused on neural receivers capable of replacing traditional 
signal processing chains of the receiver, this work under Task 3.2 goes further by introducing 
learning capabilities into the transmitter.  

The key innovation is the joint training of a neural receiver and a trainable transmitter using 
custom constellations or even novel waveforms. We demonstrate that this technology allows 
to build systems which can communicate effectively without relying on traditional 
demodulation reference signals (DMRS). Unlike existing 5G NR implementations, which rely 
heavily on structured pilots for channel estimation, the proposed architecture removes the 
need for explicit pilot signals entirely. Instead, the system learns to embed channel estimation 
mechanisms implicitly into the transmitted data, guided by an end-to-end loss function. This 
becomes particularly important for systems where the piloting overhead can dominate the 
efficiency – such as for short message communications.  Additionally, end-to-end learning can 
discover novel symbol constellations that are robust to hardware impairments, such as phase 
noise, which play an increasingly important role for communications in the sub-THz band. 

The potential of our approach to future wireless networks is significant. By eliminating pilot 
overhead and jointly optimizing the signal design, such systems can achieve higher spectral 
efficiency, improved robustness to hardware impairments, and provide greater adaptability 
to specific environments. These qualities are central to the CENTRIC mission of enabling 
intelligent, future-proof wireless networks, and they point toward a viable path for next-
generation standards such as 6G and beyond. 
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2 End-to-end learning for the Air-interface 

 
Figure 1: End-to-end learning of a pilotless communication scheme by extending the Neural 

receiver (NRX) with a trainable custom constellation 

This section focuses on the development and evaluation of pilotless communication systems 
enabled by end-to-end (E2E) learning, a technique that represents a significant departure 
from classical 5G NR physical layer designs. Rather than relying on predefined signal 
processing blocks and dedicated reference signals, E2E learning treats the entire transceiver 
chain—including both transmitter and receiver—as a trainable system, optimized jointly to 
maximize performance under real-world channel conditions. In doing so, it offers a promising 
pathway towards more efficient, adaptive, and intelligent wireless communication 
architectures. 

In 5G NR terminology, the system depends on the demodulation reference signal (DMRS) for 
channel estimation. While effective, DMRS consume valuable time-frequency resources 
resulting in an effective rate loss of the overall system. In this work, we eliminate the need 
for explicit pilots altogether by allowing the receiver to infer channel state information 
directly from the structure of the transmitted signal. This is made possible through a neural 
receiver (NRX) trained alongside a trainable custom constellation at the transmitter, enabling 
reliable data reconstruction without any pilot overhead. 

Unlike conventional systems that rely on fixed QAM modulation, our approach treats the 
constellation points as learnable parameters, allowing the transmitter to discover modulation 
schemes that are tailored to the channel characteristics and receiver behavior. These custom 
constellations often evolve to include symbol structures that implicitly support channel 
estimation—a phenomenon we refer to as the emergence of anchor symbols. These symbols 
act as self-organized references within the data stream, demonstrating the system’s ability to 
internalize roles typically reserved for explicit pilots. 

The results presented in this section highlight the feasibility of this approach, demonstrating 
not only competitive block error rate (BLER) performance but also substantial gains in 
goodput, thanks to the reduced overhead. The architecture is based on and extends the NRX 
developed in Task 3.4, now operating in a fully pilotless mode with support for joint 
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transmitter-receiver optimization. While this methodology departs from 5G compliance, it 
remains close to implementable reality through minimal modifications—such as pilot masking 
and constellation table updates—and provides a compelling blueprint for future 6G systems. 

All code and experiments of this section are available as open source implementation on 
Github. 

2.1 System Model 

We restrict the work on pilotless communications to single user MIMO OFDM communication 
system where a user with NTX transmit antennas sends messages to a receiver equipped with 
NRX receive antennas. Such a communication system is illustrated in Figure 1. 

We assume an OFDM-based system with NS and NF being the number of OFDM symbols and 
subcarriers forming the resource grid (RG), respectively. The following description is in the 
frequency-domain, i.e., assuming post-FFT samples and a sufficiently long cyclic prefix (CP). 

For reliable communications, the transmitter encodes a bit vector 𝐛𝐛nF,nS, ∈ {0,1}m of m bits 
on every resource element (RE) [𝑛𝑛𝐹𝐹 ,𝑛𝑛𝑆𝑆] allocated for data transmission, where 1 ≤ nF ≤ NF 
and 1 ≤ 𝑛𝑛𝑆𝑆 ≤ 𝑁𝑁S. To that aim, every vector 𝐛𝐛nF,nS is mapped onto a complex-valued baseband 
symbol denoted by xnF,nS ∈ ℂ which is typically done by using a 2m quadrature amplitude 
modulation (QAM) with Gray labelling. In the following, we will introduce custom 
constellations, i.e., xnF,nS is not on the regular QAM grid anymore. 

This leads to the OFDM RG of baseband modulated symbols  

𝐗𝐗 = �
𝑥𝑥1,1 . . . 𝑥𝑥1,𝑁𝑁𝑆𝑆
. . . . . .
𝑥𝑥𝑁𝑁𝐹𝐹,1 . . . 𝑥𝑥𝑁𝑁𝐹𝐹,𝑁𝑁𝑠𝑠

�.   

In 5G NR, some positions in 𝐗𝐗  are not used for data transmission but send known pilots, so-
called demodulation reference signal (DMRS) pilots. This is explicitly not done in the following 
experiment, i.e., all entries of 𝐗𝐗 carry data symbols. 

Hence, the received RG is denoted by as 𝐘𝐘 = {𝐲𝐲nF,nS}1≤nF≤NF,1≤nS≤NS where 𝐲𝐲nF,nS ∈ ℂ
NRX is 

the received signal for the RE [𝑛𝑛𝐹𝐹 ,𝑛𝑛𝑆𝑆]  and given as 

𝒚𝒚𝑛𝑛𝐹𝐹,𝑛𝑛𝑆𝑆 = 𝑯𝑯𝑛𝑛𝐹𝐹,𝑛𝑛𝑆𝑆𝒙𝒙𝑛𝑛𝐹𝐹,𝑛𝑛𝑆𝑆 + 𝒘𝒘𝑛𝑛𝐹𝐹,𝑛𝑛𝑆𝑆       

Where 𝒙𝒙𝑛𝑛𝐹𝐹,𝑛𝑛𝑆𝑆 = �𝑥𝑥𝑛𝑛𝐹𝐹,𝑛𝑛𝑆𝑆,1 , … , 𝑥𝑥𝑛𝑛𝐹𝐹,𝑛𝑛𝑆𝑆,𝑁𝑁𝑇𝑇𝑇𝑇� is the vector of transmitted baseband symbols, 

𝑯𝑯𝑛𝑛𝐹𝐹,𝑛𝑛𝑆𝑆 ∈ ℂ
𝑁𝑁RX×𝑁𝑁TX is the channel matrix, and 𝒘𝒘𝑛𝑛𝐹𝐹,𝑛𝑛𝑆𝑆 ∼ 𝒞𝒞𝒞𝒞 �𝟎𝟎,σ2𝑰𝑰𝑑𝑑𝑁𝑁RX

� is the complex-valued 

additive white Gaussian noise (AWGN) with noise power 𝜎𝜎2. Additional effects such as 
hardware impairments could be easily integrated in this model. 

The task of the receiver is now to produce an estimate of the transmitted bit 
sequence  𝐛̂𝐛nF,nS ∈ {0,1}m or log likelihood-ratios (LLRs) thereof. Let ℓnF,nS,i ∈ ℝ denote the 
LLR associated to the i-th bit of 𝐛̂𝐛nF,nS. 

https://github.com/NVlabs/neural_rx/blob/main/notebooks/e2e_pilotless_communications.ipynb
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As channel model, we consider the 3GPP 38.901 TDL models, in particular, we use the TDL-C 
model with 100 Hz Doppler shift and 300ns delay spread. It is worth noting that this channel 
model is fully differentiable. During training, we fix the SNR in a first stage when learning the 
custom constellations and finetune the receiver in a second step on a randomized SNR to 
further optimize the robustness of the system. 

For further details on the system model, we refer the reader to previous deliverables D3.2 [7] 
and D3.3 [8]. 

2.2 End-to-end Learning & Custom Constellations 

 

Figure 2 Learned custom constellation for pilotless communications of 16 symbols, i.e., each 
symbol transmits 4 bits. 

Our system consists of two major components: a trainable transmitter that employs custom 
constellation points xnF,nS ∈ ℂ instead of standard modulation, and a neural network-based 
receiver that learns to decode signals and estimate the channel without relying on pilot 
symbols [1]. These components are trained jointly in an end-to-end manner using a 
differentiable channel model. As such, the concept requires two key enablers which will be 
explained in the following: 

1) Custom constellations 

2) DMRS-free slot configuration 

The end-to-end system (including the channel model) is fully differentiable [4] and, hence, 
SGD-based training is straightforward. We use the ADAM optimizer with learning rate 𝑙𝑙 =
10−3, and the BCE loss function. The task of the receiver is to solve 𝑁𝑁F × 𝑁𝑁S × 𝑚𝑚 binary 
classification problems in parallel from the received signal Y. We can estimate the BCE by 
Monte-Carlo integration: 
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ℒ ≈ −
1

𝐵𝐵𝑁𝑁F𝑁𝑁S𝑚𝑚
� � � � �𝑏𝑏𝑛𝑛𝐹𝐹,𝑛𝑛𝑆𝑆,𝑖𝑖

[𝑏𝑏] log(𝜎𝜎(ℓ𝑛𝑛𝐹𝐹,𝑛𝑛𝑆𝑆,𝑖𝑖(𝒀𝒀[𝑏𝑏])))
𝑚𝑚−1

𝑖𝑖=0

𝑁𝑁S

𝑛𝑛𝑆𝑆=1

𝑁𝑁F

𝑛𝑛𝐹𝐹=1

𝐵𝐵−1

𝑏𝑏=0

+ (1 − 𝑏𝑏𝑛𝑛𝐹𝐹,𝑛𝑛𝑆𝑆,𝑖𝑖
[𝑏𝑏] (log(𝜎𝜎(−ℓ𝑛𝑛𝐹𝐹,𝑛𝑛𝑆𝑆,𝑖𝑖(𝒀𝒀[𝑏𝑏])))� 

 
where B is the batch size, the superscript [b] is used to refer to the 𝑏𝑏th batch example, and 
σ(⋅) is the logistic sigmoid function. ℓ𝑛𝑛𝐹𝐹,𝑛𝑛𝑆𝑆,𝑖𝑖(𝒀𝒀) denotes the LLR computed by the detector 
from the received signal 𝒀𝒀 for the 𝑖𝑖th bit of layer 𝑛𝑛T transmitted over the RE [𝑛𝑛𝐹𝐹 ,𝑛𝑛𝑆𝑆]. As LLRs 
are binary logits, σ(ℓ𝑛𝑛𝐹𝐹,𝑛𝑛𝑆𝑆,𝑖𝑖(𝒀𝒀)) gives the corresponding probability for the bit to be equal to 
one, given Y. For training, we average the loss over all iterations to ensure that inference of 
the receiver can be done for a flexible number of iterations.  
 
As described in D3.6, an additional loss on the channel estimate can be used to further 
improve the training convergence. 

For further details on the NRX architecture, we refer to deliverable D3.3 and the open-source 
code release in D3.4 available via https://github.com/NVlabs/neural_rx. One difference is 
that we do not provide least squares (LS) channel estimates as input of the neural receiver 
since no DMRS pilots are available for the initial LS channel estimation. 

Note that the custom constellation points xnF,nS ∈ ℂ of the transmitter are now also trainable 
parameters of the network, i.e., gradients of the loss w.r.t. xnF,nS must be calculated. As the 
end-to-end system is implemented in NVIDIA Sionna, this is done via TensorFlow’s automated 
gradient computation. Note that the same custom constellations are used for all 1 ≤ nF ≤ NF 
and 1 ≤ 𝑛𝑛𝑆𝑆 ≤ 𝑁𝑁S transmitted symbols. For 𝑚𝑚 = 4, this means only 16 additional complex-
valued, i.e., 32 real-valued weights must be trained while the neural receiver itself has >100k 
trainable parameters. 

The transmitter starts with a classical (i.e., as specified in the 5G NR standard) 16-QAM 
constellation as initialization. During training, however, these constellation points are allowed 
to move within the complex plane as they are treated as trainable parameters. Over the 
course of training, the system learns to organize the constellation in a way that best supports 
data recovery at the receiver, given the characteristics of the channel and the absence of pilot 
symbols. An example of such a constellation after training is shown in Figure 2. 

2.3 Interpretation of Pilotless Communications 

Explaining the exact behavior of custom constellations in combination with neural receivers 
is challenging due to the black-box nature of neural networks. However, we have set up a 
simple experiment to gain an intuition of how the inherent channel estimation works. 

https://github.com/NVlabs/neural_rx
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Figure 3: Relative average power of a received slot using custom constellations and 48 

subcarriers (y-axis) and 14 OFDM symbols (x-axis). 

Our hypothesis is that one symbol acts as an "anchor" for channel estimation, standing out 
from the remaining symbols as shown in Figure 3. The other constellation points follow the 
expected behavior of non-uniform geometric shaping. It is important to note that the 
occurrence of such a strong symbol is reproducible, although the labeling is mostly random 
and depends on the specific training seed, among other factors. This phenomenon also 
strongly depends on the training SNR and does not occur if channel estimates are provided. 
Intuitively, gradient descent finds the best tradeoff between maximizing the information rate 
of the constellation and the required piloting overhead for a specific system configuration. 

Since we have trained the NRX with double_readout functionality (see report D3.6), meaning 
the NRX returns channel estimates, we can visualize the result of channel estimation in Figure 
4. Keep in mind that the NRX has not seen any classical pilot for channel estimation in this 
setup. In the following experiment, we keep the transmitted slot fixed but average over many 
channel realizations. 
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Figure 4: MSE Channel estimation error in dB for a received slot using custom constellations 

and 48 subcarriers (y-axis) and 14 OFDM symbols (x-axis). 

 

 
Figure 5: MSE channel estimation error in dB for a received slot using custom constellations 

and 48 subcarriers (y-axis) and 14 OFDM symbols (x-axis). This is simulated after removing the 
anchor symbol. 

As expected, in Figure 5 we observe a significantly larger channel estimation error when 
excluding the anchor symbol from the transmit message, i.e., we randomly select the 
transmitted symbols from the remaining 15 out of 16 constellation points. Figure 6 completes 
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this comparison by evaluating MSE when excluding each of the custom constellation symbols 
from the transmit message. 

 

 

Figure 6: Channel estimation error after excluding the symbol with index i from the 
transmitter alphabet. 

As expected, we observe a significantly larger channel estimation error when excluding 
the anchor symbol (index 𝑖𝑖 = 15) compared to excluding any other symbol. We conclude that 
this anchor symbol has a specific contribution to the implicit channel estimation carried out 
by the neural receiver. 

2.4 Performance Evaluation 

 

Figure 7: Block error rate performance evaluation on transport block level of the pilotless 
communications scheme in comparison with multiple baselines. 
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We conducted a comprehensive evaluation of the trained system under realistic channel 
models. Initially, the system was trained using a TDL-C channel model and subsequently 
evaluated with a TDL-B model to assess generalization capabilities and avoid overfitting. This 
evaluation included comparisons against several standard 5G NR baselines, such as systems 
with least-square estimation followed by LMMSE filtering, systems with K-best detection, and 
systems with perfect channel knowledge. The results are shown in Figure 7. 

The baselines are: 

• LS channel estimation with linear interpolation between pilots and LMMSE-based 
MIMO detection 

• LMMSE-based channel estimation with K-best MIMO detection. The LMMSE channel 
covariance matrix is generated for the 3GPP UMi channel (see D3.2 and D3.3) and 
K=64. 

• Perfect channel state information (CSI) and K-best detection (K=64) 

As can be seen, the NRX slightly outperforms the LMMSE+K-best baseline while benefiting 
from a lower computational complexity. Even the low complexity and real-time version 
operates less than 1 dB away from the aforementioned baseline. 

In terms of block error rate (BLER), the pilotless system matched or outperformed the baseline 
configurations across a wide range of signal-to-noise ratios. More significantly, when 
measuring goodput—defined as the number of successfully transmitted information bits per 
resource element—the pilotless system demonstrated a consistent advantage. This advantage 
stems from the reduced pilot overhead and the system's ability to maintain performance 
without explicit channel knowledge. 

Goodput measurements confirm that the neural receiver architecture can reliably decode 
information under moderate and high SNR conditions, with throughput improvements of up 
to 8% compared to the best-performing baseline systems. These gains are particularly relevant 
for high data rate applications and dense deployment scenarios, where spectral efficiency is 
critical. 

For a fair comparison, we evaluate the goodput 𝐺𝐺 of the system using the formula 

𝐺𝐺 =  
(1 − 𝑃𝑃BLER)𝑁𝑁Payload

𝑁𝑁REs
 

where 𝑃𝑃BLER is the block error rate, 𝑁𝑁Payload is the number of transmitted payload bits, and 
𝑁𝑁REs the number of occupied resource elements (including DMRS if used). The results are 
shown in Figure 8. As can be seen, the advantages of the pilotless scheme are more obvious 
when looking at the goodput instead of the BLER figures. This can be intuitively explained by 
the fact that the BLER results in Figure 7 compare systems of different information rates, i.e., 
the pilotless schemes transmit more information bits with the same occupied resources. This 
advantage does not show off in the BLER result, but becomes obvious when looking at the 
goodput result. 

 



Horizon Europe project no. 101096379 
                                                               Deliverable D3.5                 

Page | 19 of 37 

 

Figure 8: Goodput performance evaluation of the pilotless communications scheme in 
comparison with multiple baselines. 

We want to emphasize that, in particular for short messages, the piloting overhead becomes large 
and degrades the overall system spectral efficiency significantly. Thus, pilotless communications is 
a promising approach to reduce the piloting overhead for short message communications. 

2.5 Robustness and Training for Impairments 

In practical systems, performance robustness in the presence of hardware impairments is 
crucial. To address this, we extended the training framework to simulate carrier frequency 
offset (CFO) during both training and evaluation. By sampling CFO values within a fixed range 
during training, the receiver learned to compensate for frequency mismatches introduced by 
hardware imperfections or Doppler shifts. 

The results demonstrate that when trained accordingly, the system maintains its error 
performance even under significant CFO conditions. This highlights the flexibility of the neural 
receiver and the feasibility of integrating compensation for various impairments directly into 
the training process, thereby reducing the need for dedicated signal processing blocks in 
deployment. 
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Figure 9: Screenshot from the Mobile World Congress 2024 Demonstrator together with our 
partner Rohde & Schwarz. 

We have demonstrated the impact of CFO in a hardware-in-the-loop testbed at Mobile World 
Congress 2024 together with Rohde & Schwarz. A screenshot of the live demo is shown in 
Figure 9. As can be seen, the CFO causes severe performance degradation of the pilotless 
communications scheme when not considered in the training. However, when included in the 
training data, the end-to-end system learns to compensate for the CFO. This is an important 
aspect for various use-cases with high CFO, either as a result from cheap hardware 
components, or as the result of high carrier frequencies such as the case in THz 
communications. 

2.6 Summary 

This work demonstrates the feasibility and practical relevance of pilotless communication 
systems enabled through end-to-end learning. By jointly training a neural receiver and a 
custom trainable constellation, we eliminate the need for explicit pilots such as DMRS, while 
maintaining reliable data reconstruction and achieving higher spectral efficiency. The system 
effectively learns signal structures that embed implicit reference mechanisms, enabling 
accurate channel estimation and equalization without relying on standardized pilot signals. 

An important observation is that these gains can be realized with minimal modifications to 
existing 5G NR implementations. The approach requires (a) the use of custom modulation 
tables—already supported to some extent in the standard—and (b) a non-piloting mode, 
which would require only minor extensions to signaling protocols. This compatibility allows 
for rapid experimentation and potential incremental deployment without disrupting existing 
infrastructure. 

As the wireless ecosystem moves toward open, cloud-native, and AI-driven architectures, the 
ability to adapt receiver behavior via training, rather than redesign, becomes increasingly 
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valuable. The presented pilotless communication scheme is an early but powerful example of 
how learning-based transceiver design can unlock new capabilities for 6G systems, including 
increased data rates, reduced overhead, and environment-aware operation. 

In line with the CENTRIC vision, this work lays the foundation for scalable, intelligent, and 
reconfigurable physical layers, providing a strong basis for future research in multi-user 
learning, online adaptation, and standardization of AI-native communication protocols. 
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3 End-to-end learning for non-codebook-based Symbol 
Modulations and Short Packets 

This section focuses on the end-to-end learning schemes under two studies; (i) non-codebook 
based symbol modulations and (ii) short packets. The study on end-to-end learning for non-
codebook-based symbol modulations aims to achieve scalable symbol modulation learning to 
support any M-ary modulation through a single AI/ML model. The study further includes 
practical aspects such as required signalling for online training. The other study on end-to-end 
learning for short packets focuses on the enablers and mechanisms to support joint source 
channel coding and modulation (JSCCM) for compressed CSI feedback, one of the use cases 
for short packet transmissions. The study defines methods to determine parameters and 
configurations for the JSCCM based compressed CSI feedback aiming to reduce the impact of 
impairments such as PARP.     

3.1 Scalable Symbol Modulation Learning  

3.1.1 Introduction 

Symbol modulation and symbol demodulation are among the fundamental blocks of the PHY 
layer of wireless communications, as shown in Figure 10. Symbol modulators convert a group 
of encoded bits to complex symbols that represent the in-phase and quadrature components 
of the baseband signal, whereas symbol demodulators convert the received baseband 
complex signals to group of bits that are fed into the channel decoder. The number of bits 
carried within a symbol depends on the modulation order 𝑄𝑄𝑚𝑚 of the modulation scheme.  

 

Figure 10: Main blocks in the PHY Layer 

Modulation schemes used in 5G NR PDSCH are QAM-based and ranging from QPSK to 1024-
QAM [9]. The modulation schemes are used in combination with the channel coding to 
determine the spectral efficiency of data transmission. The combination of modulation and 
coding schemes (MSC) in 5G NR is in Tables 5.1.3.1-1 to 5.1.3.1-4 in [10]. Prior to the start of 
downlink/uplink transmission, BS instructs the UE to select an MCS index table.   

Autoencoders are a special type of unsupervised neural networks, wherein an autoencoder 
tries to find a low-dimensional representation (i.e., compressed) of the input at an 
intermediate layer that is reconstructed at the output with minimum error. In an autoencoder, 
the goal of the training is minimizing a cost function dependent on the difference/distance 
between desired output and actual output with respect to the neural network parameters. 
Autoencoders are typically used in dimensionality reduction, denoising, anomaly detection, 
data compression, etc. The goal of autoencoders in PHY layer is to find representations of 
input messages in an intermediate layer that are robust against the distortions created by 
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wireless channel, transmitter/receiver hardware impairments, and any other effect that could 
impact an efficient transmission of a signal from the transmitter to the receiver. 

In this study, we focus on autoencoder based symbol modulation where we propose and 
evaluate a scalable autoencoder structure supporting any M-ary symbol modulation and 
further discuss practical aspects such as signalling and online training.    

3.1.2 System Model and Proposed Method 

System Model 

Autoencoder based symbol modulation learning is an end-to-end learning method which 
replaces the symbol modulation and demodulation blocks at the transmitter and receiver with 
trainable blocks as shown in Figure 11. Here, input to the autoencoder is the bits from the 
channel encoder output and output of the autoencoder is the probability of output being 
equal to input for the received symbol, when binary cross entropy is used as the loss function. 
The output probability at the output of autoencoder can be used to generate LLR values 
required for the channel decoder.  

 

Figure 11: End-to-end trainable symbol modulation 

One of the issues with autoencoder based symbol modulation is that separate autoencoders 
need to be trained for each modulation order as the size of input bits to autoencoder changes 
for each modulation order. In this study, we propose a scalable autoencoder structure that 
can be trained for 𝑀𝑀-ary modulations where M, i.e. size of the constellation can be changed 
arbitrarily. An exemplary structure is given in Figure 12. The inputs to the autoencoder are 
represented with +1 for binary 1 or -1 for binary 0, so that 𝑥𝑥𝑖𝑖 ∈ {+1,−1}. Hence, for each 𝑀𝑀-
ary symbol modulation there are 𝑀𝑀 = 2𝑚𝑚 possible inputs to the autoencoder. The neural 
network output maps 𝑚𝑚 inputs to two real valued outputs, 𝑦𝑦𝐼𝐼 and 𝑦𝑦𝑄𝑄, that are applied power 
normalization to ensure the same average bit energy (for bits in 𝐷𝐷) for every 𝑀𝑀-ary 
modulation. The outputs 𝑦𝑦𝐼𝐼 and 𝑦𝑦𝑄𝑄 represent the in-phase and quadrature components of a 
complex symbol that is fed into the waveform modulator, such as OFDM. The scalable 
structure can be constructed for a maximum number of input size 𝑚𝑚∗ while some of the inputs 
at transmitter side can be padded with zeros, so that 𝑥𝑥𝑖𝑖 = 0 for 𝑖𝑖 ≥ 𝑚𝑚. The symbol 
demodulation at the receiver starts with the output samples of the equalizer, 𝑦𝑦𝐼𝐼′ and 𝑦𝑦𝑄𝑄′ , which 
are real valued samples that represent the in-phase and quadrature components of the 
received complex symbols. The samples are input to the demodulator NN at the receiver that 
has 𝑚𝑚 outputs, 𝑥𝑥0′ , 𝑥𝑥1′ , … , 𝑥𝑥𝑚𝑚−1

′ , that represent the received encoded binary symbols where 
𝑥𝑥𝑖𝑖′ ∈ [−1, +1]. The autoencoder outputs 𝑥𝑥𝑖𝑖′ at the receiver side for 𝑖𝑖 ≥ 𝑚𝑚 are discarded during 
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the demodulation stage. The scalable NN structure allows maximum 𝑀𝑀∗-ary modulation 
where 𝑀𝑀∗ = 2𝑚𝑚∗. The maximum number of input size 𝑚𝑚∗ depends on the implementation 
complexity, training overhead, etc.  

The scalable NN structure for modulation learning allows training for all possible 𝑀𝑀-ary 
modulations within a given single NN structure. Another option for NN structure for 
modulation learning is to construct separate NNs for each 𝑚𝑚, which is expected to incur 
additional complexity and memory requirements.    

 

Figure 12: Scalable NN structure for 𝑴𝑴-ary symbol modulation, 𝑴𝑴 = 𝟐𝟐𝒎𝒎. 

The overall structure of the end-to-end symbol modulation learning in the PHY layer chain is 
further illustrated in Figure 13. Some of the blocks in between encoder and decoder of 
autoencoder are waveform modulation, transmitter RF, channel, receiver RF, waveform 
demodulation, equalization.  

 

Figure 13: Scalable symbol modulation learning in PHY layer 

Training and Signalling  

For the online training of the autoencoder based symbol modulation, a new type of reference 
signal may be defined, e.g., a training reference signal (TR-RS). The Training Reference Signals 
(TR-RS) are used as part of the feedforward computations to train a NN. A TR-RS consists of a 
single complex symbol that represents the output of the transmitter autoencoder NN (symbol 
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modulator), i.e., 𝑌𝑌 = 𝑦𝑦𝐼𝐼 + 𝑦𝑦𝑄𝑄𝑗𝑗, for a given input 𝑋𝑋 = {𝑥𝑥0, … , 𝑥𝑥𝑚𝑚−1}, and on the contrary to 
current 5G NR modulation methods,  𝑦𝑦𝐼𝐼 and 𝑦𝑦𝑄𝑄 are continuous real valued so that 
�𝑦𝑦𝐼𝐼 ,𝑦𝑦𝑄𝑄 ∈ ℝ ∶  −1 < 𝑦𝑦𝐼𝐼 < 1,−1 < 𝑦𝑦𝑄𝑄 < 1� and quantized with the default precision prior to 
waveform modulation. The complex signals transmitted within a TR-RS are specific to the UEs 
that is determined based on the weights of the transmitter autoencoder NN. A TR-RS can be 
located on any resource element that are reserved to the UE following the initial access 
procedures. The sequence of 𝑋𝑋 used to generate TR-RS is known to transmitter and receiver 
in advance. A typical sequence of 𝑋𝑋 for modulation training includes all possible inputs of an 
M-ary modulation. For example, for 𝑚𝑚 = 4, 𝑋𝑋0 = 0000,𝑋𝑋1 = 0001, … ,𝑋𝑋𝑀𝑀−1 = 1111, 
where 𝑋𝑋𝑖𝑖  denotes the 𝑖𝑖-th input sequence. The complex symbol carried by the 𝑖𝑖-th TR-RS, 
𝑌𝑌𝑖𝑖 = 𝑦𝑦𝐼𝐼𝑖𝑖 + 𝑦𝑦𝑄𝑄𝑖𝑖 𝑗𝑗, is computed based on the weights of the transmitter autoencoder NN. 

Training process of the autoencoder NNs can be performed offline or online. Offline training 
can be performed within a computer simulator for a given channel statistic. However, offline 
training may not reflect the channel conditions specific to a UE. Offline trained NN weights 
can be used as initialization for online training. The weights and structure (number of layers, 
nodes), i.e., parameters, of the offline trained NN for different channels constitute a codebook 
for NN parameters that is shared between BS and UEs. After a UE completes the initial access 
procedures, BS selects parameters to be used for the corresponding BS-UE connection and 
sends the index of parameters from the shared codebook to the UE. An example shared 
codebook structure is given in Table 1 where the codebook table can include NN index, 
structure, weights, and the corresponding type of channel the NN is trained for. NN index 
denotes the index of the chosen NN parameters. Structure field is composed of an array of 
size of the number of layers and each element of the array indicates the nodes per layer. As 
an example, [2,16,8] structure denotes a NN with three layers and each layer has 2, 16, and 8 
nodes, respectively. Weights field is composed of an array of size of the number of NN weights. 
As an example, [2,16,8] structure denotes a NN weight array of size 2 × 16 +  16 × 8 =
 160. In the table, structure, weights and type of channels are exemplary, and the table can 
be extended for any type of channel.  

Table 1: An example codebook of NN parameters for 𝒎𝒎∗ = 𝟖𝟖 

NN Index 
INN 

Structure 
 (nodes per layer) 

Weights  Type of Channel 

0 [2,8,8] [0.0235, -0.4511, 0.7890, …]1x80 Stationary, high SNR 

1 [2,8,8,8] [0.3501, 0.0511, -0.2084, …]1x144 Low mobility, medium SNR 

2 [2,16,8] [-0.7394, -0.0034, 0.6318, …]1x160 Medium mobility, medium SNR 

… … … … 

 

The flowchart and procedure for the proposed symbol modulation learning are given in Figure 
14 and Figure 15 that includes joint online training at both BS and UE. The procedure steps 
are explained below.  
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Step-1: UE completes initial access procedures and sends UE specific information such as 
location, statistics of the underlying wireless channel and device impairment statistics (e.g., 
carrier frequency offset, ADC loss, timing offset, noise figure, etc.) to the BS. 

Step-2: BS selects the index from the codebook of NN parameters, e.g., Table 1, based on the 
UE specific information and sends the index to the UE.   

Step-3: UE initializes the NN model using the received index of the codebook and replies to BS 
with an initialization complete message via PUCCH. 

Step-4: After BS receives the initialization complete message from the UE, BS sends a known 
TR-RS sequence to the UE to test the initialized NN.  

Step-5: UE demodulates the output samples of the equalizer for the received TR-RS symbols 
to compute the receiver NN output loss. UE sends the training loss as part of the training 
quality indicator (TQI) which can include loss to BS within the CSI reporting feedback.   

Step-6: BS receives the TQI.  

- If the loss value in the TQI is above a threshold, then BS decides to retrain the symbol 
modulator/demodulator. BS sends Training Configuration Message to the UE to configure 
the training process with convergence and maximum iteration constraints. Go to Step-7.  

- If the loss value in TQI is below a threshold, then BS decides there is no need for retraining. 
Then, the inference procedure starts.   

Step-7: UE replies to BS with Training Ready message via PUCCH.  

Step-8: BS sends training symbols via TR-RS to the UE. 

Step-9: UE trains the receiver NN using the received TR-RS and updates the NN parameters by 
computing the receiver NN output loss and error values for the nodes in the NN. 

- In case the loss converges within a maximum number of iterations, i.e., successful 
completion of the training, Go to Step-11.  

- In case, the loss does not converge within a maximum number of iterations, i.e., 
unsuccessful training, UE sends Training Failure message to BS via PUCCH to terminate the 
training process. Upon receiving this message BS deploys conventional MCS for the symbol 
modulation. 

- In case maximum number of iterations is not reached yet UE feedback the error values of 
the input nodes of the receiver NN to BS via Training Status Message. UE can also send the 
current loss and convergence within TQI periodically to the BS. Go to Step-10. 

Step-10: BS trains the transmitter NN using the error values feedback from the UE.  
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- In case BS decides to terminate the training process, due to insufficient resources, power 
consumption, latency, loss and convergence values in TQI etc., UE and BS deploy 
conventional MCS for the symbol modulation.  

- In case BS decides to stop the training, UE and BS deploys current trained parameters.  

- In case BS decides to continue training process, go to Step-8. 

Step-11: UE sends Training Complete message to BS via PUCCH. 

 

Figure 14: Flowchart of the symbol modulation training 
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Figure 15: Procedure for symbol modulation learning - online training at BS and UE 
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3.1.3 Performance Evaluation 

In this section, we evaluate the performance of the proposed scalable symbol modulation 
learning method through simulations. First, we evaluate the performance under additive 
white Gaussian noise (AWGN) and then under an additional non-linear impairment, phase 
noise, especially prevalent in high frequency communications.  

The effective channel between 𝑌𝑌 and 𝑌𝑌′ can be modelled with any differentiable channel 
model and used for the training of the autoencoder model. Assuming that the channel model 
is AWGN, so that 𝑌𝑌′ = 𝑌𝑌 + 𝑛𝑛, where 𝑛𝑛~𝑁𝑁(0,𝑃𝑃𝑛𝑛) and 𝑚𝑚∗ = 6, the evaluation results of the 
trained model are provided in Figure 16 and Figure 17. In Figure 16, the learned constellations 
and received symbols are provided. In Figure 17, the symbol error rate (SER) for the QAM-
based and autoencoder-based symbol modulation is provided, where the results are similar 
showing that the autoencoder-based method can learn the optimal constellation shape in 
AWGN.  

Another set of results are provided in Figure 18 and Figure 19 for a channel with AWGN and 
phase noise, 𝑌𝑌′ = 𝑌𝑌 ⋅ 𝑒𝑒−𝑗𝑗𝑗𝑗 + 𝑛𝑛, where 𝜓𝜓~𝑁𝑁(0,𝛼𝛼‖𝑥𝑥‖2) and 𝑛𝑛~𝑁𝑁(0,𝑃𝑃𝑛𝑛). In Figure 18, the 
learned constellations and received symbols are provided, where the learned constellations 
are no longer QAM-like due to non-linear phase noise. In Figure 19, the SER for the QAM-
based and autoencoder-based symbol modulation is provided for AWGN and phase noise. The 
results of symbol modulation learning show improved SER compared to traditional QAM-
based modulation in the presence of non-linear phase noise.   

 

Figure 16: NN-designed constellations for AWGN channel 



Horizon Europe project no. 101096379 
                                                               Deliverable D3.5                 

Page | 30 of 37 

 

Figure 17: SER vs Es/N0 for AWGN channel 

 

 

Figure 18: AE-designed constellations for AWGN channel and phase noise 
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Figure 19: SER vs Es/N0 for AWGN channel and phase noise 

3.1.4 Conclusion 

In this study, we have proposed a scalable autoencoder structure to support any M-ary 
modulation for symbol modulation learning. In the proposed method, the symbol modulation 
and demodulation blocks are replaced with neural network blocks where the input and output 
of the autoencoder are zero-padded during training and inference according to the selected 
M-ary modulation. We have evaluated the performance of the proposed methods via 
simulations and demonstrated the learned constellations and performance improvement 
under different channel conditions including non-linear phase noise that is prevalent in high 
frequencies. We have further investigated required signalling and mechanisms to enable 
symbol modulation learning for beyond 5G and 6G communications.    
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3.2 Joint Source Channel Coding and Modulation for Short Packet 
Transmissions   

3.2.1 Introduction 

End-to-end learning for short packets has various use cases in wireless communications.  One 
of these use cases, AI/ML based CSI compression, is studied in 3GPP as a means to reduce the 
UL CSI feedback reporting overhead while acquiring higher resolution DL channel state 
information at the NW. The size of the CSI feedback is significantly smaller than the data 
packets, around an order of magnitude. AI/ML-based CSI compression uses an end-to-end 
two-sided autoencoder (AE) model, where the encoder part is located at the transmitter (UE) 
side and compresses the high dimensionality input data (e.g., CSI) to a lower dimensionality 
latent vector; the decoder part is located at the receiver (NW) side and performs the 
reconstruction based on the received latent vector (e.g., compressed CSI).   

Existing approaches to compress the Channel State Information (CSI) focus only on the 
compression of CSI where the compression efficiency is limited due to subsequent legacy 
blocks of channel encoder and symbol modulation. Given that the size of CSI data is small 
compared to data packets, the subsequent legacy blocks, i.e., channel encoder/decoder and 
symbol modulator/demodulator can be part of the end-to-end learning process. In this study, 
we focus on the enablers for efficient mechanisms for the reporting of compressed CSI 
through an end-to-end learning based joint source channel coding and modulation 
mechanism.  

3.2.2 System Model and Proposed Method 

From an end-to-end perspective, current studies in 3GPP on CSI compression focus on the 
sperate source channel coding (SSCC) approach wherein the compressed CSI is channel coded 
and symbol modulated separately, as illustrated in Figure 22. In SSCC approach, the output of 
the encoder of CSI compression is quantized and converted to binary to be used as input for 
the channel coding. Joint source channel compression and modulation (JSCCM) approach is a 
more efficient end-to-end compression alternative for CSI feedback wherein the Autoencoder 
(AE) is trained to perform CSI compression, channel coding and symbol modulation jointly, as 
illustrated in Figure 23. In JSCCM approach, the output of the encoder of the CSI compression 
is complex valued and can be used as input to IFFT block (i.e., OFDM Mapping and 
Modulation).        

 

 

Figure 20: Example SSCC end-to-end structure 
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Figure 21: Example JSCCM end-to-end structure 

As opposed to SSCC method, where the input to the OFDM block constitutes QAM-based 
discrete valued complex symbols, in the JSCCM method, the input to ODFM block is non-QAM 
based and continuous valued. Existing OFDM modulation techniques are typically engineered 
for QAM-based symbols to handle impairments such as peak-to-average-signal-ratio (PAPR) 
accordingly. Non-QAM based continuous valued compressed CSI symbols (CCS) at the output 
of the encoder of autoencoder may cause increased PARP.  

The increase in PAPR may cause performance degradation in data channels and control 
channels depending on the selected mode of reporting the CCS. We define three different 
modes of reporting the CCS via legacy logical channels, i.e., PUSCH and PUCCH, as shown in 
Figure 24. The first mode, Mode-1, assumes that the CCS are multiplexed onto resources of a 
scheduled PUSCH transmission. The second mode, Mode-2, assumes that the CCS are 
explicitly transmitted over a configurable and/or indicated PUCCH resource. The third mode, 
Mode-3, assumes that the UE may use a dedicated uplink channel for CCS transmission. For 
example, the NW may configure a CCS channel which is only dedicated for CCS transmission 
for Mode-3. A user equipment may determine the mode through a configuration from the 
Network or it may determine and report the mode for CCS reporting.  

 

Figure 22: Modes of CCS Reporting 

In case the CCS reporting will be done through Mode-1, the UE may further determine a 
pattern for the CCS, as shown in Figure 25. The UE may select the best CCS pattern out of 
available patterns that minimizes the PAPR when the CCS is multiplexed with PUSCH symbols. 
In addition, when CCS reporting mode is Mode-1, there may be two options for the 
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multiplexing of the CCS symbols with PUSCH symbols, where in the first option CCS symbols 
are overwritten on PUSCH symbols and in the second option additional resources for CCS are 
allocated.  

In the first option, the CCS symbols may replace (i.e., overwrite) the corresponding PUSCH 
symbols in the OFDM grid. In this option, the MCS of the PUSCH may be relaxed (i.e., lower 
index MCS) to support successful decoding of the overwritten PUSCH symbols. For the 
selection of the CCS resources (e.g., locations of CCS resources in Figure 25), one method is 
determining the resources to minimize the final PARP when the puncturing resources in 
PUSCH are replaced with CCS symbols. For this method, the UE may be configured with a set 
of patterns for CCS resources, and the UE may determine the index of CCS pattern that results 
in lowest PAPR in the OFDM grid of multiplexed CCS and PUSCH. The UE may compute PAPR1, 
the average PARP for PUSCH multiplexed with CCS pattern#1, and PAPR2, the average PAPR 
for PUSCH multiplexed with CCS pattern#2 and then chose the pattern with lowest PARP. For 
the selection of the CCS resources, another method is determining CCS resources such that 
the distance between the PUSCH symbols in the selected pattern and the CCS symbols is 
minimized. 

In the second option, additional PUSCH resources could be provided so that no PUSCH 
symbols are overwritten on the OFDM grid. This option would not distort the throughput or 
error performance of PUSCH but increases the overhead. Similar to the previous option, the 
CCS resources can be determined such that the final PAPR is minimized when CCS are 
multiplexed with PUSCH resources.   

 

Figure 23: Example CCS Patterns for Mode-1 Reporting 

3.2.3 Expected Outcomes 

The methods described in this study focus on improving the efficiency of an end-to-end 
learning based short packet transmission use case, i.e., CSI compression. In the existing 
discussions in 3GPP, CSI compression is based on separate source channel coding (SSCC), i.e., 
compressed CSI is first channel coded and then modulated. The performance of this scheme 
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is limited due to fixed blocks of channel encoder and symbol modulation where the 
compressed CSI symbols are converted to bits first for channel coding and then converted 
back to symbol domain via symbol modulation.  

End-to-end learning based on joint course channel coding and modulation (JSCCM) aims at 
removing the bottlenecks caused by conversion between different blocks and quantized 
symbol modulation. The JSCCM approach may lead to improved KPIs, i.e., Squared 
Generalized Cosine Similarity (SGCS) and throughput, with same complexity and autoencoder 
model. Thanks to the relatively short packet sizes of CSI feedback compared to data packets, 
the model complexity could be kept limited to achieve practical implementations at a UE.  

3.2.4 Conclusion 

In this study, we have proposed mechanisms to enable joint source channel coding and 
modulation (JSCCM) for CSI compression, a potential use case for end-to-end learning for 
short packet transmissions.  Different to the existing schemes for CSI compression, the JSCCM 
scheme further includes channel coding and symbol modulation within the trainable blocks. 
We have proposed new methods to handle the impairments, such as increased PAPR, that 
would be caused by the transmission of non-QAM based symbols especially when they 
multiplexed with other logical channels, e.g., PUSCH. In this way, the potential performance 
benefits of JSCCM based CSI feedback would not be limited by the impairments in practical 
implementation in a 6G communication system.     
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4 Conclusions   
This report demonstrates that end-to-end learning fundamentally redefines physical layer 
design by enabling joint optimization of traditionally isolated communication blocks, achieving 
significant gains in spectral efficiency (8% higher goodput), hardware impairment tolerance, 
and protocol flexibility. The proposed pilotless systems, scalable modulation architectures, 
and integrated JSCCM approaches provide concrete pathways for deploying AI-native air 
interfaces within existing infrastructure, balancing innovation with practical implementation 
constraints. These technological breakthroughs could position 6G not merely as an 
evolutionary upgrade but as a transformative platform where neural networks dynamically 
adapt to emerging hardware capabilities, regulatory requirements, and application 
demands—ushering in an era where communication systems continuously self-optimize 
through embedded intelligence. 
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